
AFRL-IF-RS-TR-2001-168
Final Technical Report
August 2001

"THE INTELLIGENT ROOM"

MIT AI Laboratory

H. Shrobe, M. Coen, K. Wilson, L. Weisman, K. Thomas, M. Groh, B. Phillips,
S. Peters, N. Warshawsky, and P. Finin

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20011109 067
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-168 has been reviewed and is approved for publication.

APPROVED : ^C^A^h^.^tc
ROBERT M. FLO
Project Engineer

FOR THE DIRECTOR:

JAMES W. CUSACK, Chief
Information Systems Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the deta needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Menagement and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

AUGUST 2001
3. REPORT TYPE AND DATES COVERED

 Final Jun94-Aug99
4. TITLE AND SUBTITLE

"THE INTELLIGENT ROOM"

6. AUTHOR(S)

H. Shrobe, M. Coen, K. Wilson, L. Weisman, K. Thomas, M. Groh, B. Phillips,
S. Peters, N. Warshawsky, and P. Finin

S. FUNDING NUMBERS

C - F30602-94-C-0204
PE- 61101E
PR- B322
TA- 00
WU -01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MIT AI Laboratory
545 Technology Square
Boston Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFSB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-168

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Robert M. Flo/IFSB/(315) 330-2334

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words/

Intelligent, interactive environments promise to drastically change our everyday lives by connecting computation to ordinary,
human-level events happening in the real world. The motivation for building these intelligent, interactive environments is to
bring computation into the real, physical world to support what are traditionally considered non-computational activities.
The ultimate goal is to allow people to interact with computational systems in a way that they would with other people: via
gesture, voice, movement, and context. An existing prototype space, known as The Intelligent Room, was created to
experiment with different forms of natural, multi-modal human-computer interaction. This research platform is equipped
with numerous computer vision, speech, and gesture recognition systems that connect it to what the inhabitants of the room
are doing and saying. The purpose of this report is to detail the design of The Intelligent Room and the experiences gained
during its creation.

14. SUBJECT TERMS

Human-Computer Interactions, Intelligent, Interactive Interfaces/Environments, Multi-Modal
Interaction

15. NUMBER OF PAGES

56
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89] (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 94

Table of Contents

Introduction 1

Building Brains for Rooms: Designing Distributed Software Agents 2

Design Principles for Intelligent Environments 9

Learning Spatial Event Models from Multiple-Camera Perspectives 17

A Context Sensitive Natural Language Modality for an Intelligent Room 26

Meeting the Computational Needs of Intelligent Environments: The Metaglue
System 37

Introduction
This report consists principally of five research papers that cover
the extent of the Intelligent Room Project carried out at the
Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. They cover a five-year period of work, and illustrate
the evolution of the technologies developed in support of this
project. The papers are:

1. Building Brains for Rooms: Designing Distributed Software Agents,
by Michael H. Coen

2. Design Principles for Intelligent Environments, by Michael H. Coen

3. Learning Spatial Event Models from Multiple-Camera Perspectives, by
Michael H. Coen and Kevin W. Wilson

4. A Context Sensitive Natural Language Modality for an Intelligent
Room, by Michael Coen, Luke Weisman, Kavita Thomas, and Marion Groh

5. Meeting the Computatonal Needs of Intelligent Environments: The
Metaglue System, by Michael H. Coen, Brenton Phillips, Nimrod
Warshawsky, Luke Weisman, Stephen Peters, and Peter Finin

The first two of these discuss the overall principles of organization
in the Intelligent Room; the third treats the specific problems of
the use of visual images in the Room; the fourth deals with
linguistic interactions with the Room, spoken and written; and the
last describes the eventual computational infrastructure that binds
the Room together as a whole.

Building Brains for Rooms:
Designing Distributed Software Agents

Michael H. Coen

MIT AI Lab
545 Technology Square
Cambridge, MA 02139
mhcoen® ai.mit.edu

Abstract
This paper argues that complex, embedded software agent
systems are best constructed with parallel, layered
architectures. These systems resemble Minskian Societies of
Mind and Brooksian subsumption controllers for robots,
and they demonstrate that complex behaviors can be had via
the aggregates of relatively simple interacting agents. We
illustrate this principle with a distributed software agent
system that controls the behavior of our laboratory's
Intelligent Room.

Introduction

This paper argues that software agent systems that interact
with dynamic and complex worlds are best constructed
with parallel, layered architectures. We draw on Brooks'
subsumption architecture (Brooks, 1985) and Minsky's
Society of Mind (Minsky, 1986) theory to dispel the notion
that sophisticated and highly capable agent systems need
elaborately complex and centralized control.

Towards this end, we present an implemented system of
software agents that forms the backbone of our
laboratory's "Intelligent Room" (Torrance, 1995). These
agents, known collectively as the Scatterbrain , control an
environment very tenuously analogous to the intelligent
rooms so familiar to Star Trek viewers — i. e., rooms that
listen to you and watch what you do; rooms you can speak
with, gesture to, and interact with in other complex ways.

The Scatterbrain consists of approximately 20 distinct,
intercommunicating software agents that run on ten
different networked workstations. These agents' primary
task is to link various components of the room (e. g.,
tracking cameras, speech recognition systems) and to
connect them to internal and external stores of information
(e. g., a person locator, the World Wide Web). Although an

' Copyright © 1997, American Association for Artificial Intelligence
(www. aaai. org). All rights reserved.
' This material is based upon work supported by the Advanced Research

Projects Agency of the Department of Defense under contract number
F30602— 94— C— 0204, monitored through Rome Laboratory and
Griffiss Air Force Base.

individual agent may in fact perform a good deal of
computation, we will focus our interest on the ways in
which agents get connected and share information rather
than how they internally manipulate their own data. And
while the Intelligent Room is a fascinating project in itself,
we will treat it here mainly as a test-bed to learn more
about how software agents can interact with other
computational and real entities.

Our approach has also been modeled on a somewhat
unorthodox combination of the Brooks (Brooks. 1991) and
Minsky approaches to core AI research. As pointed out in

(Kautz et. al., 1994), it is difficult to find specific tasks for
individual agents that are both feasible and useful given
current technology. Many of the non-trivial tasks'we
would like software agents to perform are simply beyond
the current state of the art. However, taking our cue from
Minsky, we realize interesting and complex behaviors can
be had via the aggregates of simpler ones: groups of simple
agents can be combined to do interesting things. We also
found Brooks' subsumption architecture useful for guiding
the creation of the Scatterbrain, particularly for building
parallel layers of behaviors that allow the room to process
multiple events simultaneously and to change contexts
quickly. In many ways, the room is similar to a
disembodied robot, so it comes as no surprise that the
robotics community can provide insight into how the
room's brain should be designed. We argue, however, that
this does not preclude insights obtained in creating the
Scatterbrain from applying to other distributed software
agents systems. Rather, as argued by Etzioni (Etzioni,
1994, 1996; Etzioni et al. 1994), even agents who solely
interact with the online world (and don't have cameras for
eyes and microphones for ears) can be viewed as a kind of
simulated, virtual robot. More important than its
connection with the real world, what the Scatterbrain
shares with Brooks' robots is its organizational structure
and its lack of central processing; all of the Scatterbrain's
agents work together in parallel with different inputs and
data being processed simultaneously in different places.

The next section of this paper describes the Intelligent
Room's physical infrastructure. After this, we introduce
the room's most recent application, a Tour Guide agent
that helps a person present our lab's research to visitors.

Next, we present in detail the room's software agent
architecture, including the design and implementation of
several components of the Scatterbrain and Tour Guide
agents. We also contrast our approach with several earlier
monolithic efforts taken in our lab to program and control
the behavior of the Intelligent Room.

Part of the motivation for this work has been to push the
envelope of software agent design. Much has been made
over the lack of obvious " killer applications" for software
agents. After all, how many automated meeting schedulers
does the world need? We are interested in exploring new
realms of complex interactions for software agents which
in and of themselves constitute these " killer apps" that
have been seemingly so elusive from the single-agent
perspective. Minsky argues that societies of agents can do
things that seem inordinately complex when their behavior
is viewed as the work of a single entity. Our experiments
with fairly large assemblies of software agents mark an
early attempt towards establishing that this is indeed the
case.

The Intelligent Room
The Intelligent Room project explores new forms of
interaction and collaboration between people and
computers. Our objective is to create a new kind of
environment capable of interpreting and contributing to
activity within it. On a grand scale, we are examining a
paradigmatic shift in what it means to use a computer.
Rather than view a computer as a box with a keyboard and
monitor used for traditional computational tasks, we
envision computers being embedded in the environment
and assisting with ordinary, traditionally non-
computational activity. For example, if I lose my keys in
the Intelligent Room, I'd someday simply like to ask the
room where I left them.

The Intelligent Room is an excellent environment in
which to conduct core AI research according to the criteria
of both Brooks (Brooks, 1991) and Etzioni (Etzioni, 1994),
The room is " physically" grounded in the real-world. The
room's cameras and microphones allow it to deal allow it
to deal with the kinds of complex, unpredictable and
genuine phenomena that Brook's argues is essential for a
core AI research testbed. However, the room also
processes abstract, symbolic information that actually
represents something extant, thereby satisfying Etzioni's
desiderata. For example, if a person asks the room, What
is the weather in Boston?, the room needs to recognize
more than a meaningless weather token ~ it needs to get
that information and display it to the user. This is done
using a variety of information retrieval systems available
on the World Wide Web.

This section first describes the room's physical
infrastructure. We then present the room's most recent
application, a Tour Guide agent that helps a person present
our lab's research to visitors. In the next section, we
discuss in detail the room's software agent architecture,
including the design and implementation of the

Scatterbrain and Tour Guide agents.

Infrastructure - From the bottom up
Figure 1 diagrams the room's physical layout. The
Intelligent Room's infrastructure consists of several
hardware and software systems that allow the room to
observe and control its environment in real-time. The
positions of people in the room are determined using a
multi-person tracking system. Hand pointing actions are
recognized by two separate gesture recognition systems.
The one used in the application described below allows the
room to determine where someone is pointing on either of
two images projected on a room wall from high-intensity,
ceiling mounted VGA projectors. A speech recognition
system developed by (Zue, 1994) allows the room to listen
to its inhabitants, and it is used in conjunction with a
speech generator to enable to the room to engage in
sustained dialogues with people. The room interfaces with
the START natural-language information retrieval system
(Katz, 1990) to enhance its ability to understand complex
linguistic input. The room also controls two VCRs and
several other video displays in addition to the ceiling
mounted projectors. A matrix switcher allows arbitrary
connections between the room's audio/ visual inputs and
outputs.

The room's hardware systems are directly interfaced
with low-level C programs to insure their real-time
operation. For example, the room's tracking cameras have
30 Hz frame rates and their data streams need to be
synchronously processed using direct operating system
calls.

Figure 1 - Intelligent Room Floor Plan

The Tour Guide Agent
The room's most recent application provides support for
someone giving tours of our laboratory. These tours
typically involve a group of visitors meeting with a
graduate student who discusses and answers questions
about the lab's research and shows several video clips.
Rather than have these presentations given in an ordinary

Conference room, we have decided to have them in the
Intelligent Room so the room can assist the human tour
guide. A typical dialogue between the room and student
tour guide is:

Tour guide : Computer, load the AI Lab tour
Room : / am loading the AI Lab tour. Right projector now
displays a Netscape browser window with a special Lab Tour
home page
Tour guide : Using hand, points at link to a research project
displayed on the wall and says, Computer, follow this link
Room : Loads the indicated page into the browser.
Tour guide : Computer, show me the Intelligent Room home
page.
Room : Loads the URL corresponding to the name of the page .
Then says , / have a video clip for this research. Would you like
to see it?
Tour guide : Computer, yes.
Room : Moves appropriate video casettetape to correct position
and starts the clip playing on left projector.
Tour guide: (watches video for a few seonds) Computer, stop the
video. Computer, play the Virtual Surgery clip.
Room : Performs requested action. Stops video when clip is done.
Tour guide : Computer, how many graduate students are there at
the AI Lab?
Room: I am asking the START system for the answer ... The
Laboratory's 178 members include 17faculty members, 26
academic staff, 29 research and support staff, and 106 graduate
students. Also displays web page with elaborated answer.

Other applications include a control center for planning
huricane disaster relief and an intelligent living room.

Control Architectures

The room has been discussed so far at its most concrete
and most abstract: namely, its hardware infrastructure and
its high-level software applications. How these applications
are actually created on top of this infrastructure, i. e., how
the room actually works, is the subject of this section.

Monolithic Control
In its early stages of development, each of the room's
components was wrapped inside a TCP client or server that
connected with a monolithic C-language program that
controlled the room's behavior. Figure 2 contains this
controller along with each of the programs it connected
with. (Included in parentheses with each component is the
name of the workstation it ran on.)

From a conceptual point of view, the most serious flaw
with the centralized controller was that it failed to
distinguish between basic functioning common to all room
contexts - such as noticing when someone came through
the doorway - and unique activities associated with a
particular room application. Furthermore, adding new
functionality to the room required modifying the
monolithic controller and manually determining the
interactions and conflicts between old and new room

Zue Client SpeechOut Netscape Pointing
(love-bug) (oat-bran) (tesierosa) (big-bang)

Zue Server

(general-lee) Enhanced Reality

Big Messy (tesierosa)

X-Control C Program

(tesierosa) (outer-space)

VideoMux

START (wonderbug)

(sakharov) Tracking VCR

(brave-heart, diablo. &. raphael) (wonderbug)

Figure 2 - The Monolithic Controller

functions. There was no way to modularly add new room
capabilities on top of old ones and assume everything
would continue working as expected.

Also, directing the information flow among the room's
various components -one of the main functions of the
controller - was overly difficult in a language like C. We
needed higher-level mechanisms for describing how room
information moved among its producers and consumers.

From a practical point of view, the monolithic controller
also made it difficult to reconfigure the room dynamically
or restart pieces of the room independently of others. We
often found while working on the room that in order to
restart one component, it was necessary to restart the entire
room. This was particularly frustrating because starting the
room required the coordinated activity of several people to
start particular programs (in a predetermined order) and
configure various room hardware. It was also difficult to

move components of the room to different workstations
because that required modifying hard-coded machine
dependencies in the code.

SodaBot
Although we managed to use the monolithic approach

for several very simple applications, it seemed unlikely to
scale to the more complex interactions we had in mind for
the room. Our initial dissatisfaction with this architecture
led to the adoption of the SodaBot software agent platform
(Coen, 1994) for duplicating the functionality of our initial
monolithic room controller with a system of distributed
software agents.
SodaBot provides both a programming language and
runtime platform for software agents, and it simplifies
writing interactive programs by providing high-level
primitives for directing flows of online information. For
example, it provides mechanisms for writing agent-
wrappers that interface with preexisting software either via
text-based or graphical user interfaces (X-windows and
Windows 95/ NT).
For example, we created a SodaBot Netscape Agent that

controls interactions with a Netscape browser. It offers
functions to other agents such as those listed below.

Function
New (host)
Load(url)
Page_ watch()

LaserPointing

Link_ watch()

Text
Page(direction)

Purpose
Runs a new browser on given host
Loads URL in browser
Arranges for notification (of URL) to
another agent whenever browser loads new

page
Arranges for notification to another agent
when a new page is loaded containing its
URL/ anchor text pairs
Returns text of current page
Moves browser scroll-bar in given
direction

For the Intelligent Room, we use SodaBot agents as
computational glue for interconnecting all of the room's
components and moving information among them.
Initially, we simply duplicated the room's monolithic
controller using SodaBot's high-level programming
language. Most notably, SodaBot simplified description of
room functioning and interaction with remote TCP-based
clients and servers by removing networking and hardware
details. However, this new room controller, dubbed the
Brain, was still a computational bottleneck, and we had yet
to distinguish between a general behavioral infrastructure
for the room (i. e. its core functionality) and the more
complex, application specific interactions we built on top
of it. This led to the development of the room's current
control system, the Scatterbrain, which is the subject of the
next section.

Distributed Room Control
The Scatterbrain (Figure 3) is platform on top of which
room applications can be layered. In the figure, each circle
represents a distinct SodaBot software agent that is
wrapped around and interfaced with an external
application. (The layer containing these " base applications"
is not shown.) Each of the Scatterbrain agents is
responsible for a different room function. For example, the
Speechln Agent, runs and interfaces with our speech
recognition systems. Once started, Speechln allows other
agents to submit context-free grammars corresponding to
spoken utterances they are interested in. As they do, it
updates the speech recognition systems to contain the
current set of valid utterances. When a sentence is heard
by one of the speech systems, Speechln then notifies those
agents who indicated they were interested in it. As another
example, the Netscape Agent connects to the Display Agent
to make sure that when web pages are loaded, the browser
is actually displayed somewhere in the room where people
can see.

The Scatterbrain agents are distributed among 10
different workstations and rely on SodaBot interagent
communication primitives to locate and communicate with
each other. The lines in the figure represent default
interactions the room manifests in all applications, such as
having various agents connect with the speech recognition
agents and making sure the tracking system notices when
them connect to non-displayed external applications. The

someone comes in the room. Essentially, the Scatterbrain
implements the Intelligent Room's reflexes.

Speechln SpeechOut Netscape

Tracking

Summit

Dragon Display

FingerPointing

VideoMux VCR X-Control SGI Setup EnhancedReality

Figure 3 - The Agents of the Scatterbrain

The room no longer has a central controller. A small
startup agent runs all of the Scatterbrain agents which then
autonomously move to the machines on which they are
supposed to run. All the Scatterbrain agents then work
together in parallel with different inputs and data being
processed simultaneously in different places. This makes
the room robust to failure in one of its sub-systems and
allows us to restart sections of the room independently.
Also, the SodaBot system allows real-time data
connections between agents to be broken and resumed
invisibly. For example, if the Tracking Agent is updating
another agent in real-time, either one of them can be
stopped and restarted and they will be automatically
reconnected.

Layered on top of the Scatterbrain, we created higher-
level agents that rely on the Scatterbrain's underlying
behaviors. Figure 4 contains the room's intermediate
information-level applications such as a Weather Agent
that can obtain forecasts and satellite maps for particular
places. By relying on the previously described interaction,
if the Weather Agent uses the Netscape Agent to display
information, it doesn't need to be concerned with insuring
the browser is displayed in a place where the user is
looking.

Weather

START

Interface

Slides

Storm

Interface

Speechln SpeechOut Netscape LaserPointing Tracking

Summit FingerPointing

Dragon Display

VideoMux VCR X-Control SGI Setup Enhanced Reality

Figure 4 - Information Agents
We then created specific room application agents that

relied on the lower-level, general-purpose agents in the
room. Figure 5 contains a diagram of several room
applications and how they connect to the room's
underlying architecture. Note that all of the objects in the
figure represent SodaBot software agents and many of
called the X-Server that controls the actual SGI workstation

next section explores two of the application agent
interactions in more detail.

Disaster Relief Talk Web

Scenario Presentation Surfer

START Slides

Weather Interface Storm

Interface

Speechln SpeechOut Netscape LaserPointing Tracking

FingerPointing
Summit

Dragon Display
Enhanced

VideoMux VCR X-Control SGI Setup Reality

Figure 5 - Intelligent Room Software Agents

Agent Interaction
This section examines how we can get the room to exhibit
interesting behavior by layering agents on top of each
other. We examine two separate room behaviors and then
discuss how they combine to produce greater functionality.

We have a system in the room called Storm , used in a
disaster relief planning scenario, that can display scalable
maps of the Caribbean. People can interact with Storm
using pointing and speech. For example,

User : Computer, display Storm on the left projector.
(User now points at Puerto Rico.
User : Computer, zoom in.
(User now points at San Juan.)
User : Computer, what is the weather here ?
(The room then displays a weather forecast for San Juan
inside a Netscape browser on the other projector.)
To see how this scenario works, we first examine pointing
recognition as an example of simple agent interaction. We
then look at a more complex scenario from the Tour Guide
agent presented earlier.

By default, the room's projectors are set by the Display
Agent to show portions of the screens of two of our SGI
workstations. If someone points someplace close to one of
these projected displays, the display's mouse cursor moves

to that position. Although this seems like a trivial process,
there is a fair amount of effort behind it, as shown in
Figure 6. The person moving his finger is reflected in the
camera images received by the neural network pointing
software. This reconciles the images to produce new
pointing information. These new data are passed to the
FingerPointing Agent which is responsible for handling all
such events in the room. By default, the Scatterbrain has
all pointing events on the each display sent to an agent

generating the display. This X-Server agent then moves
the mouse cursor to the appropriate position, which is
reflected in the displayed image. However, the Storm
Agent overrides this default behavior and redirects
pointing events on the Storm display to itself. Upon receipt
of a pointing event, it updates the Storm application's
internal cursor, which moves intelligently between salient
geographical features. For example, pointing near San
Juan will cause the Storm program to register the city with
the Storm Agent, rather than a point three pixels to its left.
Finally, note that the various agents are responsible for
translating between the room's many coordinate systems,
as shown alone the connections.

Display

(x'.y')
FingerPointing

Storm (screen#. x. y)
Storm Interface

Program Pointing
Neural

Net

X-Control

(x".y")

VideoMux

VideoMux

Figure 6 - Pointing in the Room
When someone in the room says What's the weather here?,
the Speechln Agent notifies the room's Disaster Relief
Planning Agent because this utterance is contained in the
grammar that agent had registered when first run. The
Storm Agent is then contacted to determine what
geographical entity is closest to where the person was
pointing close to the time they asked the question. (Low-
level room events are time-stamped by agents in order to
facilitate multimodal reconciliation.) This process is
shown in Figure 7.

Disaster Relief

Scenario

Storm tscreen», x. yiFingerPointing X-Control
Interface Pointing <x". y")

Neural

Net

Speechln

' What's the weather here?" VideoMux

Figure 7 - Multimodal Resolution

Disaster Relief

Scenario

Netscape
Display

START

Interface

Weather (x'.y'l

Storm (screen», x. yiFingerPointing X-Control

Interface PointingNeunil (x".y">

Net

Speechln

SpeechOut
VideuMux

VideoMux

Figure 8 - Loading Weather in Browser

When the Disaster Relief Agent is told what region's
weather is being queried, the Weather Agent is then asked
to display the requisite information. After consultation
with the START Agent to find an appropriate URL which
contains this information, it asks the Netscape Agent to
load the given page as shown in Figure 8, which also
displays the complete agent interaction for handling the
user's question.

A separate interaction from the Tour Guide Agent
presented earlier is shown in Figure 9. Here's someone
asks the room to load a particular web page, e. g.,
Computer, load the Intelligent Room home page.

Netscape

Web

Surfer

VCR
Display

START

Interface

Speechln

SpeechOut

"Load the Intelligent
Room Home Page"

VideoMux

VideoMux

Figure 9 - Video Notification

After the Netscape Agent receives this request from the
Speechln Agent, it loads the URL in the netscape browser.
Whenever the Netscape Agent loads a new page, it also
notifies the Web Surfer Agent that it is doing so. The Web
Surfer Agent consults with the Start Agent to check if it

has any additional information about the content of the
newly loaded web page.' In this case, it announces that it
has a relevant video. If the user indicates he wants to see
the clip, the VCR agent announces that it is cueing to the
appropriate tape position and then plays the segment.

The Scatterbrain architecture combines these two
behaviors to allow the room, for example, to notify us if
we have additional information about things being
referenced during other interactions. For example, the
room can volunteer to show video clips about San Juan
when a person asks for the weather there. This entire
interaction is contained in Figure 10, which simply
overlaps Figures 8 and 9.

Disaster Reliel Netscape
Scenario Web VCR

Surfer Display
START
Interface

Weather
FingerPointing

(x'.y')

Storm (screen*, x, y) X-Control

Interface Pointing

Neural Net

(x".y")

Speechln
SpeechOut

"What's the wea ther here?"

VideoMux

VideoMux

Figure 10 - Combining Behaviors

One of our primary interests is making the room an
active partner in applications rather than a passive servant
that simply responds to explicit commands. The video-
notify behavior discussed here is an early effort towards
this. By layering behaviors on top of the Scatterbrain that
are indirectly triggered by room activity rather than by
direct user instruction, the room can autonomously become
involved in its ongoing activities and thereby appear more
spontaneous and intelligent to users.

Note that although the Scatterbrain is not actually a
subsumption system, the influence of subsumption
architecture is clear. The room is controlled by multiple
layers of behaviors in which higher-level agents rely on the
activity of lower-level ones. When appropriate, these
higher-level agents can also override the specific behaviors
of other agents. The Scatterbrain architecture also supports
combination of agent behaviors to get enhanced
functionality.

' Note that this information is not contained within the page

itself.

Conclusion

Motivated by Minsky's Society of Mind and Brooks'
subsumption approach to building robots, we have argued
that software agent systems that interact with complex and
dynamic worlds are best created from distributed
collections of simple agents with parallel, layered
architectures.

The complexity of the overall system comes from the
interactions of these agents, even though no individual
agent is in itself particularly complex and no single agent
centralizes the system's control. This approach allows us
to build robust, reusable, and behaviorally sophisticated
systems that are capable of interacting with the ever-
changing real and online worlds. To demonstrate this
approach, we presented the Scatterbrain - a distributed
collection of software agents that control our laboratory's
Intelligent Room.

Acknowledgements
Development of the Intelligent Room has involved the
efforts of many people. Professors Tomas Lozano-Perez,
Lynn Stein and Rodney Brooks were principally
responsible for the room's conception and construction.
Mark Torrance led the project during its first year and
wrote the room's earliest monolithic controllers. The
room's many vision systems are due to the efforts of
Jeremy De Bonet, Chris Stauffer, Sajit Rao, Tomas
Lozano-Perez, Darren Phi Bang Dang, JP Mellor, Gideon
Stein, and Kazuyoshi Inoue. Polly Pook contributed to the
design of the room's distributed computation and has
worked on modeling the room's functionality as a cognitive
process. Josh Kramer wrote large sections of the
Scatterbrain and participated in the development of the
SodaBot system. All of the above mentioned were also
responsible for designing room applications, and many of
the above hacked on various room components. Kavita
Thomas, along with help from Mark, Polly, and Tomas,
configured Victor Zue's speech recognition system. (Jim
Glass provided assistance in getting the system running.)
Boris Katz and Deniz Yuret provided much support in
interfacing with and customizing the START natural
language system. Mike Wessler created one of the room's
earliest applications and wrote invaluable graphical
interfaces for much of the room's hardware.

Coen. M. 1994. SodaBot: A Software Agent Environment
and Construction System. AI Lab Technical Report 1493.
Massachusetts Institute of Technology. Cambridge, MA.

Etzioni. O. 1994: Intelligence without Robots, AI
Magazine, Winter 1994.

Etzioni, O.; Levy, H.; Segal, R.; and Thekkath, C. 1994. OS
Agents: Using AI Techniques in the Operating System
Environment. Technical Report 93-04-04. Dept. of
Computer Science. University of Washington. Seattle,
WA.

Etzioni, O. 1996: Moving Up the Information Food Chain:
Deploying Softbots on the World Wide Web, in
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI Press/ MIT Press, Cambridge,
MA, pp. 1322-1326, 1996.

Kautz, H.; Selman, B.; Coen, M.; and Ketchpel, S. 1994.
An Experiment in the Design of Software Agents. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence, AAAI Press/MIT Press,
Cambridge, MA.

Katz, B. 1990. Using English for Indexing and Retrieving.
In Artificial Intelligence at MIT: Expanding Frontiers .
Winston, P.; and Shellard, S. (editors). MIT Press,
Cambridge, MA. Volume 1.

Minsky, M. 1986.
and Schuster.

Society of Mind. New York. Simon

Torrance, M. 1995. Advances in Human-Computer
Interaction: The Intelligent Room, In Working Notes of
the CHI 95 Research Symposium, May 6-7, 1995, Denver,
Colorado.

Zue, V. 1994. Human Computer Interactions Using
Language Based Technology, IEEE International
Symposium on Speech, Image Processing & Neural
Networks, Hong Kong..

References
Brooks R. 1985: A Robust Layered Control System for a
Mobile Robot, AI Lab Memo 864, Massachusetts Institute
of Technology. Cambridge, MA.

Brooks R. 1991: Intelligence without Representation, in
Special Volume: Foundations of Artificial Intelligence,
Artificial Intelligence, 47(1-3).

Design Principles for Intelligent Environments

Michael H. Coen

MIT Artificial Intelligence Lab
545 Technology Square
Cambridge. MA 02139

mhcoen@ai.mit.edu

Abstract
This paper describes design criteria for creating highly
embedded, interactive spaces that we call Intelligent
Environments. The motivation for building these systems
is to bring computation into the real, physical world to
support what is traditionally considered non-computational
activity. We describe an existing prototype space, known
as the Intelligent Room, which was created to experiment
with different forms of natural, multimodal human-
computer interaction. We discuss design decisions
encountered while creating the Intelligent Room and how
the experiences gained during its use have shaped the
creation of its successor.

1. Introduction
This paper describes design criteria for creating highly
embedded, interactive spaces that we call Intelligent
Environments (IEs). The motivation for building EEs is to
bring computation into the real, physical world. The goal
is to allow computers to participate in activities that have
never previously involved computation and to allow
people to interact with computational systems the way
they would with other people: via gesture, voice,
movement, and context.

We describe an existing prototype space, known as the
Intelligent Room, which is a research platform for
exploring the design of intelligent environments. The
Intelligent Room was created to experiment with different
forms of natural, multimodal human-computer interaction
(HCI) during what is traditionally considered non-
computational activity. It is equipped with numerous
computer vision, speech and gesture recognition systems
that connect it to what its inhabitants are doing and
saying.

Our primary concern here is how IEs should be
designed and created. Intelligent environments, like

This material is based upon work supported by the Advanced
Research Projects Agency of the Department of Defense
under contract number F30602—94—C—0204, monitored
through Rome Laboratory. Additional support was provided
by the Mitsubishi Electronic Research Laboratories.

Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

traditional multimodal user interfaces, are integrations of
methods and systems from a wide array of subdisciplines
in the Artificial Intelligence (AI) community. Selecting
the modal components of an IE requires a careful strategic
approach because of the a priori assumption that the IE is
actually going to be embedded in the real-world. In
particular, there is a need for the use of synergy (Cohen
[4]) to allow imperfect modalities to reinforce and support
each other.

We discuss below the design of our laboratory's
Intelligent Room and how experiences gained during its
use have shaped the creation of its successor. Given the
increasingly widespread interest in highly interactive,
computational environments (Bobick et al. [3]), (Coen
[6,7,8]), (Cooperstock et al. [10]), (Lucente et al. [17]),
we hope these experiences will prove useful to other IE
designers and implementers in the AI community.

Some of the earliest work in this area has been done
wholly outside the AI community. This is primarily due
to the perception that AI has little to offer in the way of
robust, ready for the real world systems. We contend that
Intelligent Environments not only would benefit from AI
subdisciplines ranging from knowledge representation to
computer vision, but they would be severely limited
without them.

Outline
Section 2 describes some sample interactions with and
applications of the Intelligent Room. These range from
an intelligent command post to a reactive living room.
Comparison to other HCI paradigms, such as ubiquitous
computing, and other embedded computational
environments is contained in section 3. Section 4 presents
the Intelligent Room's physical infrastructure. Sections 5
and 6 detail the Intelligent Room's visual and spoken
language modalities. We document the rationales that
influenced our approach, system limitations, and solutions
we are pursuing in the development of the next generation
Intelligent Room currently under construction in our
laboratory.

2. Room Interactions
Our approach with the Intelligent Room has been to
create a platform for HCI research that connects with real-

In Proceedings of the 1998 National Conference on Artificial Intelligence (AAAI-98)

9

world phenomena through several computer vision and
speech recognition systems. These allow the room to
watch where people are moving, under certain
circumstances where they are pointing, and to listen to a
fairly wide variety of spoken language utterances.

The Intelligent Room supports a variety of application
domains. One of these is a command center for planning
hurricane disaster relief in the Caribbean. This makes use
of two interactive projected displays that respond to both
finger pointing and laser pointing gestures. A sample
interaction with the disaster relief center is:

User: "Computer, <pause> stay awake. "
[The room will now listen for utterances without requiring they
be prefaced by the word Computer.]
User: "Show me the Virgin Islands. "
Room: "I'm a showing the map right next to you." [Room
shows map on video display closest to the user.]
User: [now points at St. Thomas.] "Zoom in. How far away is
Hurricane Marilyn ? "
Room: "The distance between Hurricane Marilyn and the city
of Charlotte Amalie located in St. Thomas is 145 miles. "
User: " Where's the nearest disaster field office ? "
[Room highlights them on the map.]
Room: "The St. Thomas disaster field office is located one mile
outside of Charlotte Amalie. Michael, there is a new weather
forecast available. Do you want to see it? "
User: "Yes, show me the satellite image. "

We are currently developing a next generation of the
Intelligent Room, called Hal (after the computer in the
movie, 2001: A space Odyssey). Hal is furnished like a
combination home/office and supports a wider range of
activities than the original Intelligent Room. A scenario
that currently runs within Hal is:

I walk into Hal and lie down on the sofa after
shutting the door. Hal sees this, dims the
lights, closes the curtains, and then puts on Mozart
softly in the background. Hal then asks, "Michael,
what time would you like to get up?"

The goal of implementing these types of scenarios is to
explore and help define what an intelligent environment
should be, what sensory capabilities it needs, and to
determine what roles such environments could potentially
play in our lives. In the process, these scenarios provide
insight into both how AI systems can participate in the
real world and directions for further research in the
subdisciplines whose systems contribute to the creation of
intelligent environments.

3. Motivation
Intelligent environments are spaces in which computation
is seamlessly used to enhance ordinary activity. One of
the driving forces behind the emerging interest in highly

interactive environments is to make computers not only
genuinely user-friendly but also essentially invisible to
the user. The user-interface primitives of these systems
are not menus, mice and windows but gesture, speech,
affect, and context. Their applications are not
spreadsheets and word processing but intelligent rooms
and personal assistants.

Intelligent environments are both embedded and
multimodal and thereby allow people to interact with
them in natural ways. By being embedded, we mean
these systems use cameras for eyes, microphones for ears,
and ever-increasingly a wide-range of sophisticated
sensing technologies to connect with real-world
phenomena. Computer vision and speech
recognition/understanding technologies can then allow
these systems to become fluent in natural forms of human
communication. People speak, gesture, and move around
when they communicate. For example, by embedding
user-interfaces this way, the fact that people tend to point
at what they are speaking about is no longer meaningless
from a computational viewpoint and we can build systems
that make use of this information. In some sense, rather
than make computer-interfaces for people, we want to
make people-interfaces for computers.

Coupled with their natural interfaces is the expectation
that these systems are not only highly interactive (i.e. they
talk back when spoken to) but also that they are useful for
ordinary activities. They should enable tasks historically
outside the normal range of human-computer interaction
by connecting computers to phenomena (such as someone
walking into a room) that have traditionally been outside
the purview of contemporary user-interfaces.

Why this isn 't Ubiquitous Computing

Intelligent environments require a highly embedded
computational infrastructure; they need many connections
with the real world in order to participate in it. However,
this does not imply that computation need be everywhere
in the environment nor that people must directly interact
with any kind of computational device. Our approach is
to advocate minimal hardware modifications and
"decorations" (e.g., cameras and microphones) in
ordinary spaces to enable the types of interactions in
which we are interested. Rather than use the computer-
everywhere model of ubiquitous computing - where for
example, chairs have pressure sensors that can register
people sitting in them or people wear infrared-emitting
badges so they can be located in a building - we want to
enable unencumbered interaction with non-augmented,
non-computational objects (like chairs) and to do so
without requiring that people attach high-tech gadgetry to
their bodies (as opposed to the approach in [24,25]).

AI-based approaches have much to offer these
environments. For example, although a pressure sensor
on a chair may be able to register that someone has sat
down, it is unlikely to provide other information about
that person, e.g., her identity. Visual data from a single

10

camera can provide far more information than simple
sensing technologies. This includes the person's identity,
position, gaze direction, facial expression, gesture, and
activity ([13, 25,17,30,12]). While there has yet to be a
coherent system that unifies all of these capabilities, many
prototypes are currently under development.
Furthermore, enhancing the capabilities of a computer
vision system often requires modifying only the software
algorithms that process incoming images and not the
room's, sensory components. Also, because the room
senses at a distance, objects, in particular people and
furniture, do not need to be physically augmented and/or
wired for the room to become aware of them.
Other related work
The DigitalDesk project (Wellner [26], Newman et al.
[19]) was an early and influential system that had a bird's
eye view of a desktop through an overhead video camera.
It recognized and responded to predetermined hand
gestures~made by users while interacting with real paper
documents on the surface of a desk. The Intelligent
Room has a desktop environment directly motivated by
the DigitalDesk, which recognizes a wider range of
complex hand gestures (Dang [11]).

Other substantial efforts towards highly interactive
environments include an automated teleconferencing
office (Cooperstock et al. [10]) and an immersive fictional
theater (Bobick et al. [3]). Each of these projects makes
use of embedded computation to enable unusual human-
computer interactions, e.g., vision-based person tracking.
However their modal processing is extraordinarily
specific to their applications, and the applicability of such
carefully tuned systems to other domains is unclear. The
Classroom 2000 project (Abowd et al. [1]) is an
educational environment that automatically creates
records linking simultaneous streams of information, e.g.
what the teacher is saying while a student is writing down
her notes on a digital pad. Mozer ([18])
describes a house that automatically controls basic
residential comfort systems, such as heating and
ventilation, by learning patterns in its occupants behavior.

Related user-interface work such as Cohen et al. [5]
uses multimodal interface technology to facilitate human
interaction with a preexisting distributed simulator. In
doing so, it provides a novel user-interface to a complex
software system, but it is one that requires tying down the
user to a particular computer and a specific application.
We are interested in creating new environments that
support never before conceived of applications -
applications that historically have not involved
computation.

4. The Intelligent Room
The Intelligent Room occupies a 27'x37' room in our
laboratory. Approximately half of this space is laid out
like an ordinary conference room, with a large table
surrounded by chairs. (See Figure 1.) This section has

two bright, overhead LCD projectors in addition to
several video displays. There is also an array of computer
controlled video equipment which is discussed below.

Pointing Cameras

- Displuj s

OK-s

\ //
Tnickinü Cameras

Wire! os
Microphone
Rix-ci\er

Figure 1 - A skeletal view of the
conference area in the Intelligent Room

Mounted at various places in the conference area are
twelve video cameras, which are used by computer vision
systems.

Separated from the conference area by a small partition
and occupying the rest of the room are most of the
workstations that perform the room's computation. The
section of the room is not interactive, but having it
adjacent to the interactive conference area simplifies
wiring, implementation and debugging.

The Intelligent Room contains an array of computer
controlled devices. These include steerable video
cameras, VCRs, LCD projectors, lights, curtains,
video/SVGA multiplexers, an audio stereo system, and a
scrollable LCD sign. The room's lighting is controlled
through several serially interfaced X-10 systems. Many
of the room's other devices have serial ports that provide
both low-level control and status information, e.g., our
VCRs can report their present position on a videotape to
give us random access to video clips. The room can also
generate infrared remote control signals to access
consumer electronics items (namely, objects that don't
have serial ports).

Room Controller
When the Intelligent Room was in the early stages of it
design and construction, the most challenging research
problems appeared to be developing its computer vision
and speech recognition/understanding systems. What was
not obvious is that interconnecting all of the rooms many
subsystems and coordinating the flows of information
among the room components was a non-trivial problem.
Developing a software architecture that allowed the room
to run in real-time and cope with vagaries of its real-world
interactions emerged to be one of the room's chief
research problems.

What emerged from an iterative development process is
a modular system of software agents known collectively

11

as the Scatterbrain (described in detail in Coen [6]). The
Scatterbrain currently consists of approximately 50
distinct, intercommunicating software agents that run on
ten different networked workstations. These agents'
primary task is to connect various components of the
room (e.g., tracking and speech recognition systems) to
each other and to internal and external stores of
information (e.g., a person locator or an information
retrieval system). Essentially, the Scatterbrain agents are
intelligent computational glue for interconnecting all of
the room's components and moving information among
them.

5. Room Vision Systems

Person Tracking
The Intelligent Room can track up to four people moving
in the conference area of the room at up to 15Hz. The
room's person tracking system (DeBonet [13]) uses two
wall-mounted cameras, each approximately 8' from the
ground. (A debugging window from the system showing
the view from one of the cameras is shown in Figure 2.)

We initially decided that incorporating a tracking
system in the Intelligent Room was essential for a number
of reasons. It gives the room the ability to know where
and how many people are inside it, including when people
enter or exit. The room is able to determine what objects
people are next to, so for example, it can show data on a
video display someone is near. A person's location in the
room also provides information about what she is doing.
For example, someone moving near a video display while
others are seated around the conference table might
indicate she is giving a presentation.

The tracking data are useful for supplying information
to other systems in the room including, to our surprise,
our speech understanding system. It was clear from the
start that tracking could disambiguate other room
modalities, for example, by providing a foveal area for
gesture recognition. However, its use in providing
contextual information to the room's speech recognizer is
a revealing example of how one modality can be used to
help overcome the weaknesses of another. In this case,
where people are in the room can sometimes provide
information about what they are likely to say (see section
6).

The tracking system works via background
segmentation and does 3D reconstruction through a neural
network. The output image from each camera is analyzed
by a program that labels and identifies a bounding box
around each occupant in the room. This information is
then sent through a coordination program that
synchronizes the findings from the individual cameras
and combines their output using a neural network to
recover a 3D position for each room occupant. People are
differentiated in the system using color histograms of
their clothing, which the room builds when they first

come inside. Because the room's configuration is fairly
static and the cameras used for tracking are stationary, the
tracking system can build a model of the room's relatively

I 1

Figure 2 - Tracking System Debug Window

slowly changing background to compare with incoming
images.

The tracking subsystem also controls three steerable
cameras. These can be used to follow individuals as they
move about the room or to select optimal views of people
given their position and previous knowledge of room
geometry, e.g. where people likely face when standing in
particular areas of the room.

This approach differs from the overhead tracking
system described in Bobick et al. [3]. Their domain had
27' high ceilings, for which it is quite reasonable to look
for people from a single camera bird's eye perspective.
Rooms with ordinary height ceilings do not make this
possible, so a stereo vision system seems necessary for
performing background segmentation.

Pointing
The Intelligent Room's two overhead LCD video
projectors display next to each other on one of the room's
walls. Each can display SVGA output from one of the
room's workstations or composite signals from any of the
room's video sources, e.g., a VCR. These projected
displays support both finger and laser pointing
interactions. For example, the room can track the finger
of a person who is pointing within four inches of the wall
where images are displayed. Alternatively, the person can
use a laser pointer to interact with the display from a
distance. Both of these pointing systems also allow
displayed screen objects to be selected (i.e. clicked) or
moved (i.e. dragged).

Additionally, the pointing systems allow people to treat
the displays like virtual whiteboards. The room can draw
a visible trail on top of a displayed image that follows the
continuous path of a motile pointing gesture. This allows
people to overlay handwritten text and drawings on top of
whatever information the room is displaying. These can
then be automatically recalled at a later date, for example,

12

when the room shows this information again.
The finger pointing system uses two cameras mounted

parallel to the wall on either side of the displays. It makes
use of only three scan lines from each camera image to
explore the region closest to the wall's surface. The laser
pointing system uses a camera roughly orthogonal to the
plane of the display wall to locate the laser's distinctive
signature on the wall's surface. These systems run at
approximately 15-20Hz, depending on the precise type of
interaction, and provide resolution per display ranging
from approximately 640x480 for laser pointing to
160x120 for finger pointing. Although the pointing
systems are sufficiently responsive for discrete pointing
and dragging events, handwriting recognition using the
above mentioned drawing feature does not seem practical
with out at least doubling the sampling frequency.

Interactive Table

Through a ceiling mounted camera, the room can detect
hand-pointing gestures and newly placed documents on
the surface of the conference table. The gesture
recognition system has been used to support a wide
variety of functions (described in Dang [11]). We found,
however, that making gestures over the surface of a table
was not a particularly natural form of interaction and
required extensive practice to master. As has been widely
observed in the graphical user interface community, we
found that increased novelty in an interface does not
necessarily lead to increased utility. This is even more
pertinent in domains like the Intelligent Room, which
stress natural modes of interaction.

One useful application of this system, however, allows
people to place Post-It™ notes on the surface of the table
and assign to them particular functions, such as dimming
the lights or announcing the current time. Touching a
given note then evokes its assigned behavior from the
Intelligent Room. As a mnemonic, the function of each
note can be handwritten upon it, giving the table the
feeling of a virtual, very non-standard control panel. The
room is oblivious to any written information on these
notes, as long as it doesn't interfere with the color
segmentation that allows individual notes to be
recognized.

Issues
Our person tracking system uses a neural network to
perform 3D reconstruction. The tracking network is
trained by laying a masking tape coordinate system on the
room's floor and then training the network by having a
person stand at each intersection of the axes. (The grid
was roughly 10x20.) Although non-network approaches
to 3D reconstruction are possible, such as directly
calculating the reverse projective transformation, they
would all likely require a user-intensive preliminary
learning period to determine the transformation between
room and image space. Thus, installing our tracking
system is labor intensive and requires some familiarity

with how it operates.
Another difficulty with this approach is that the system

is enormously sensitive to any deviation from its training
conditions. For example, if one of the cameras is moved
by so much as 1cm, the tracking system fails to function.
Although automatic recalibration might be possible by
using natural or artificial environmental fiducials, in
practice these are either difficult to detect or highly
intrusive when added to the environment. Thus, cameras
being moved or rotated requires retraining the neural
network, something a non-technical user would never
want to do.

It is not accidental that so much computer vision
research around the world is performed in rooms without
windows. Computer visions systems, particularly ones
that rely on background segmentation, can be
extraordinarily sensitive to environmental lighting
conditions. For example, early in the Intelligent Room's
development, ambient light coming through a newly
opened door could completely disrupt all of the room's
vision systems. While this was an early design flaw, in
general it can be extremely difficult to compensate for
changing lighting conditions.

Shadows are also particularly difficult phenomena to
cope with and we took great pains to avoid them. We
disabled some of the room's overhead fluorescent lighting
and used upward pointing halogen floor lamps instead.
Additionally, we selected a fairly dark colored carpet,
which is better at shadow masking. The tracking system
also used a color correction mechanism for shadow
elimination. However, a static color correction scheme
was only partially useful because the tracking cameras
were affected by the dynamic lighting of the projected
video displays.

Solutions
Our research agenda for computer vision systems for Hal
has changed drastically from the approach used in the
Intelligent Room. Rather than incorporating the state of
the art in visually based interactions, we have become far
more interested in robust vision systems that require little
calibration and are essentially self-training.

We have enabled the room's vision systems to
reinforce one another. For example, our multi-person
tracker may temporarily lose people when they occlude
one another or blend into the background. One way to
help offset this is to have the finger pointing system
provide information useful for tracking. Someone finger
pointing at the projected display must be standing
somewhere near that position on the room's floor. By
knowing where someone is pointing, the tracker can focus
its attention on that section of the room. Conversely, the
tracking system allows the room to identify the person
who is pointing at the wall. By determining which
tracked person is closest to the pointed at position, the
room can distinguish among its inhabitants during finger
pointing gestures.

Various devices in the room can also interact with its

13

vision systems. The software agents that control the
room's drapes and electrical lights notify the vision
systems before they do anything that might affect the
room's ambient lighting. This allows each vision system
either to recalibrate or to deactivate itself until conditions
favorable to its correct operation are restored and also
avoids incorrect event recognition due to luminosity
changes.

Although dynamic person tracking seemed essential
during the design of the Intelligent Room, it became clear
in retrospect that the vast majority of the tracking
system's output is thrown away. Few applications need
or can make use of real-time trajectory information for the
room's occupants. Rather, what is particularly important
is to know where someone is when she stops moving (i.e.
next to or sitting on some piece of furniture) or when she
has crossed a particular threshold (i.e. the room's
doorway).

It is far easier and computationally less demanding to
build systems that provide these kind of relatively slowly
changing data without resorting to real-time occupant
tracking. They look for people at rest in places where they
are expected to be found, such as sitting on a couch or
standing by a display, or for people crossing through a
narrow, well-defined region such as a doorway.

We have implemented and experimented with several
such systems, which we call static person locators and
threshold detectors. These include a template-based
couch detector, which locates people either sitting or
lying down on a chair or sofa. This system is easily
trained and quite robust. We have also implemented a
dedicated doorway tracker for distinctly determining
when someone enters or leaves the room, and thereby it
also keeps track of how many people are currently
present. Both of these systems are algorithmically quite
simple and far less sensitive to environmental variations
than our initial tracking system. They have proved quite
robust, and their initial detection accuracy in varying light
conditions and over a wide range of individuals is over
90%.

We are also creating generic chair locators using a
ceiling mounted vision system. Our assumption is that
occlusion of a chair provides evidence that someone is
sitting in it, and this person can be located using prior
knowledge of the chair's position. This system will use
low dimension eigenspaces for approximating object
manifolds under varying pose and lighting conditions
(Stauffer [21]). The advantage to this approach is that the
system need not be given in advance an explicit model of
the chairs it will be locating. The system can construct
object manifolds itself by having a user rotate any new
types of chairs she brings inside.

6. Speech Interactions

Among the earliest decisions regarding the Intelligent
Room was that it should support spoken language
interactions. In particular, we were interested in allowing

these interactions to be unimodal - i.e. ones that did not
tie the user to a video display to verify or correct
utterances recognized by the system nor require a
keyboard for selecting among possible alternative
utterances. We also wanted to avoid simply creating a
keyboard replacement that allowed speech commands to
substitute for actions ordinarily performed by typing or
mouse clicking. Finally, we wanted to allow interaction
with multiple applications simultaneously and thus not
have interactions that monopolized the user. In the
process, we have tried to allow the Intelligent Room to
engage in dialogs with users to gather information, correct
misunderstandings, and enhance recognition accuracy.

People in the Intelligent Room wear wireless lapel
microphones that transmit to the speech understanding
system described below. By default, the room ignores the
spoken utterances of its inhabitants, which are generally
directed to other people within the room. This state is
known as "the room being asleep."' To obtain the room's
attention, a user stops speaking for a moment and then
says the word "Computer" out loud. The room
immediately responds with an audible, quiet chirp from
an overhead speaker to indicate it is paying attention. The
user then has a two second window in which to begin
speaking to the room. If the room is unable to recognize
any utterances starting within that period, it silently goes
back to sleep until explicitly addressed again. However,
if what the user says is recognized, the room responds
with an audible click and then under most circumstances
it returns to sleep. This hands- and eyes-free style of
interaction coupled with audio feedback allows a user to
ignore the room's computational presence until she
explicitly needs to communicate with it. There is no need
to do anything other than preface spoken utterances with
the cue Computer to enable verbal interaction. Thus, a
user can interact with the room easily, regardless of her
proximity to a keyboard or monitor.

The Intelligent Room is capable of addressing users via
the Festival Speech Synthesis System (Black et al. [2]).
Utterances spoken by the room are also displayed on a
scrollable LCD sign in case a user was unable to
understand what was said. The room uses its speech
capability for a variety of purposes that include
conducting dialogs with users and getting its occupant's
attention without resorting to use of a visual display.
Sometimes, the room chooses to respond vocally to a
question because its video displays are occupied by what
it considers high priority information. For example, if a
user asks, "What's the weather forecast for New York
City?" the room can simply read the forecast to the user,
rather than put up a weather map containing forecast
information if its displays are occupied.

For processing spoken utterances, we use both the
Summit (Zue et al. [27]) and DragonDictate speech
recognition systems in parallel. Each of these has

1 The room's vision systems continue to function and respond to users even when it is

not listening for verbal input.

14

different strengths and used together they have fairly
robust performance. The Summit system recognizes
continuous speech and is particularly adept at handling
syntactic variability during recognition. By entering
bigram models, it is fairly straightforward to build
topically narrow but syntactically unconstrained sets of
recognizable utterances. Bigram models, however, make
it quite difficult to exclude particular statements from
being erroneously recognized by the system and require
that we heavily post process Summit's output. This is
performed primarily by the START natural-language
information retrieval system (Katz [15]).

DragonDictate is a commercially available system
primarily used for discrete speech dictation, meaning that
users must pause after each word. This, when coupled
with its relatively low word accuracy, would be an
intolerable speech interface to the room. However,
DragonDictate also supports explicit construction of
continuous speech, context-free recognition grammars.
Via a special library, it also provides complete control
over low-level aspects of its behavior to external
applications, which makes it ideal for incorporating into
other systems.

Issues
There is a tradeoff between making the room's

recognition grammars sufficiently large so that people can
express themselves somewhat freely versus making the
grammars small enough so that the system runs with high
accuracy and in real-time. We tuned DragonDictate's
performance by creating sets of specialized grammars for
different room contexts and having the room's software
agent controller dynamically activate different subsets of
grammars depending on the context of the activity in the
Intelligent Room (Coen et al. [9]). This allows us to
overcome the combinatorial increase in parsing time due
to incorporating natural syntactic variability in the
recognition grammars.

Instead of keeping a single enormous recognition
grammar active, the room keeps subsets of small
grammars active in parallel, given what it currently
expects to hear. The key assumptions here are that certain
types of utterances are only likely to be said under
particular circumstances, and these are circumstances
among which the room is capable of distinguishing.
These may be related to where someone is spatially, the
history of her previous interactions (i.e. what room
applications are active), how she is gesturing, what
devices in the room are doing, etc. At the simplest level,
this can range from the implausibility of someone saying
"stop the video," when none is playing, to more complex
dependencies, such as the meaninglessness of someone
asking "What's the weather there?" if no geographic
entity has somehow been brought to the room's attention.

We have generalized the notion of linguistic context to
include the state of and goings on in the room and have
put this contextual knowledge into the room's software
agents rather than its linguistic data structures. For

example, if the room starts showing a video clip, the agent
that controls the showing of videos activates the
grammars that involve VCR operation. When the clip
stops, these grammars are in turn deactivated. More
interesting cues can involve the location of someone
inside the room. The fact that someone has moved near
an interactive displayed map causes the room to pay
attention to spoken utterances involving geographic
information. Thus, information from the room's other
systems can help overcome computational limitations in
the room's speech recognition and understanding systems.

Verbal interactions can also be extremely useful for
dealing with the room's other modalities. They can be
used to gather information about what the room is
observing, to modify internal representations of its state,
or to correct a perceptual error. It is also of enormous
benefit to be able to verbally interact with the room's
vision systems while developing or debugging them,
because it is generally impossible to manually interact
with them at a workstation while remaining in the
cameras' fields of view.

7. Conclusion
Our experience with the Intelligent Room has led us to
reevaluate many of our initial assumptions about how a
highly interactive environment should be designed.
Intelligent environments need to be more than rough
assemblages of previously existing systems. In particular,
careful selection and communication among modalities
can lead to synergistic reinforcement and overall, a more
reliable system. The modalities must also be carefully
selected in order to make the environment easy to install,
maintain, and use under a wide range of environmental
conditions.

Systems that dynamically adjust to the room's activity,
such as our speech understanding system, and systems
that can train themselves and avoid extensive manual
calibration, are essential to an IE's success. We hope the
issues addressed in this paper will both stimulate further
discussion and prove useful to other designers of
intelligent environments.

8. Acknowledgements
Development of the Intelligent Room has involved the
efforts of many people. This includes Professors Tomas
Lozano-Perez, Rodney Brooks, and Lynn Stein. Graduate
students who have been or are involved in the room
include Mark Torrance, Jeremy De Bonet, Chris Stauffer,
Sajit Rao, Darren Phi Bang Dang, JP Mellor, Gideon
Stein, Michael Coen, Josh Kramer, Brenton Phillips,
Mike Wessler, and Luke Weisman. Postdocs associated
with the project include Kazuyoshi Inoue and Polly Pook.
Many undergraduates have been or are currently working
on it. These include Kavita Thomas, Nimrod
Warshawsky, Owen Ozier, Marion Groh, Joanna Yun,

15

James Clark, Victor Su, Sidney Chang, Hau Hwang,
Jeremy Lilley, Dan McGuire, Shishir Mehrotra, Peter
Ree, and Alice Yang.

References
1. Abowd, G., Atkeson, C, Feinstein, A.. Hmelo, C, Kooper,

R., Long, S., Sawhney, N., and Tani. M. Teach and
Learning a Multimedia Authoring: The Classroom 2000
project. Proceedings of the ACM Multimedia'96
Conference. 1996.

2. Black, A. and Taylor, P. Festival Speech Synthesis System:
system documentation (1.1.1) Human Communication
Research Centre Technical Report HCRC/TR-83.
University of Edinburgh. 1997.

3. Bobick, A.; Intille, S.; Davis, J.; Baird. F.; Pinhanez, C:
Campbell, L.; Ivanov, Y.; Schütte, A.; and Wilson, A.
Design Decisions for Interactive Environments: Evaluating
the KidsRoom. Proceedings of the 1998 AAAI Spring
Symposium on Intelligent Environments. AAAI TR SS-98-
02. 1998.

4. Cohen, P., "The role of natural language in a multimodal
interface," Proceedings of User Interface Software
Technology (UISTV2) Conference, Academic Press,
Monterey, California, 1992.

5. Cohen, P., Chen, L., Clow, J., Johnston, M., McGee, D.,
Pittman, K., and Smith, I. Quickset: A multimodal interface
for distributed interactive simulation. Proceedings of the
UIST'96 Demonstration Session, Seattle. 1996.

6. Coen, M. Building Brains for Rooms: Designing
Distributed Software Agents. Proceedings of the Ninth
Conference on Innovative Applications of Artificial
Intelligence. (IAAI97). Providence, R.I. 1997.
http://www.ai.mit.edu/people/mhcoen/brain.ps

7. Coen, M. Towards Interactive Environments: The
Intelligent Room (a short paper). Proceedings of the 1997
Conference on Human Computer Interaction (HCI'97).
Bristol, U.K. 1997.

8. Coen, M. (ed.) Proceedings of the 1998 AAAI Spring
Symposium on Intelligent Environments. AAAI TR SS-98-
02. 1998.

9. Coen, M; Thomas, K; Weisman, L; Groh, M; and Yee, A.
A Natural Language Modality for an Embedded
Multimodal Environment. Forthcoming.

10. Cooperstock, J; Fels, S.; Buxton, W. and Smith, K.
Environments: Throwing Away Your Keyboard and
Mouse. Commmunications of the ACM. 1997.

11. Dang, D. Template Based Gesture Recognition. SM
Thesis. Massachusetts Institute of Technology. 1996.

12. Davis, J. and Bobick, A. The representation and
recognition of action using temporal templates.
Proceedings Computer Vision and Pattern Recognition
(CVPR'97). pp.928-934. 1997.

13. DeBonet, J. Multiple Room Occupant Location and
Identification. 1996.
http://www.ai.mit.edu/people/isd/isd.doit/Research/HCI/Tr
acking public

14. Druin, A.; and Perlin, K. Immersive Environments: a
physical approach to the computer interface. Proceedings
of the Conference on Human Factors in Computer Systems
(CHV94), pages 325-326, 1994.

15. Katz, B. Using English for Indexing and Retrieving. In
Artificial Intelligence at MIT: Expanding Frontiers.
Winston, P.; and Shellard, S. (editors). MIT Press,
Cambridge, MA. Volume 1. 1990.

16. Lien, J., Zlochower, A., Cohn, J., Li, C, and Kanade, T.
Automatically Recognizing Facial Expressions in the
Spatio-Temporal Domain. Proceedings of the Workshop on

. Perceptual User Interfaces (PUI'97). Alberta, Canada.
pp.94-97. 1997.

17. Lucente, M.; Zwart, G.; George, A. Visualization Space: A
Testbed for Deviceless Multimodal User Interface.
Proceedings of the AAAI 1998 Spring Symposium on
Intelligent Environments. AAAI TR SS-98-02. 1998.

18. Mozer, M. The Neural Network House: An Environment
that Adapts to its Inhabitants. Proceedings of the AAAI
1998 Spring Symposium on Intelligent Environments.
AAAI TR SS-98-02. 1998.

19. Newman, W. and Wellner. P. A Desk Supporting
Computer-based interaction with paper. Proceedings of the
Conference on Human Factors in Computing Systems
(CHV92). p587-592. 1992.

20. Saund, E. Example Line Drawing Analysis for the
ZombieBoard Diagrammatic User Interface.
http://www.parc.xerox.com/spl/members/saund/lda-
example/lda-example.html. 1996.

21. Stauffer, C. Adaptive Manifolds for Object Classification.
1996.
http://www.ai.mit.edu/people/stauffer/Projects/Manifold/

22. Stiefelhagen, R., Yang, J., and Waibel, A. Tracking Eyes
and Monitoring Eye Gaze. Proceedings of the Workshop
on Perceptual User Interfaces (PUT97). Alberta, Canada.
pp.98-100. 1997.

23. Torrance, M. Advances in Human-Computer Interaction:
The Intelligent Room. Working Notes of the CHI 95
Research Symposium, May 6-7, Denver, Colorado. 1995.

24. Want, R.; Schilit, B.; Adams, N.; Gold, R.; Petersen, K;
Goldberg, D.; Ellis, J.; and Weiser, M. The ParcTab
Ubiquitous Computing Experiment. Xerox Pare technical
report.

25. Weiser, M. The Computer for the 21" Century. Scientific
American, pp.94-100, September, 1991.

26. Wellner, P. The DigitalDesk Calculator: Tangible
Manipulation on a Desk Top Display, Proceedings of
UIST91. pp.27-33. 1991.

27. Zue, V. Human Computer Interactions Using Language
Based Technology. IEEE International Symposium on
Speech, Image Processing & Neural Networks. Hong
Kong. 1994

16

LEARNING SPATIAL EVENT MODELS

FROM MULTIPLE-CAMERA PERSPECTIVES

Michael H. Coen and Kevin W. Wilson
Human Computer Interaction Group

MIT Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

{mhcoen, kwilson}@ai.mit.edu

Abstract. Intelligent, interactive environments promise
to drastically change our everyday lives by connecting
computation to the ordinary, human-level events
happening in the real world. This paper describes a new
model for tracking people in a room through a multi-
camera vision system that learns to combine event
predictions from multiple video streams. The system is
intended to locate and track people in the room, determine
their postures, and obtain images of their faces and upper
bodies suitable for use during teleconferencing. This
paper describes the design and architecture of the vision
system and its use in Hal, the most recently constructed
interactive space in our Intelligent Room project.

1 Introduction

For the past four years, the MIT Artificial Intelligence
(AI) Laboratory has been developing platforms for
research in Human-Computer Interaction (HCI) as part of
the Intelligent Room Project. This work has been
motivated by the following simple observation: computers
today are generally used for things that are computational,
such as reading e-mail, and for most of us, the majority of
our lives are spent doing non-computational things, such
as taking baths and eating dinner. Historically, however,
computational systems have had no connection with the
ordinary, human-level events going on in the world
around them. Thus, they have no way to participate in the
everyday lives of the people who use them.

In the Intelligent Room Project, we are interested in
creating spaces - generally known as Intelligent
Environments (IEs) - in which computation is seamlessly
used to enhance ordinary, everyday activities. We want
to incorporate computers into the real world by

This material is based upon work supported by the Advanced
Research Projects Agency of the Department of Defense
under contract number F30602—94—C—0204, monitored
through Rome Laboratory.

embedding them in regular environments, such as homes
and offices, and allow people to interact with them the
way they do with other people. The user interfaces of
these systems are not menus, mice, and keyboards, but
instead gesture, speech, affect, context, and movement.
Their applications are not word processors and
spreadsheets, but smart homes and personal assistants.
Instead of making computer interfaces for people, we
believe it is of more fundamental value to make people
interfaces for computers.

Fortunately, over the past few years, developments in
the field of computer vision have begun to provide many
opportunities for exploring new types of HCI. These
allow computational systems to, among other things,
determine people's identity, physical location, gaze
direction, facial expression, hand gestures, and activities
(for example, see [8,13]). However, the requirements
placed on machine vision systems used for IEs are
significantly different from the requirements placed on
machine visions systems used in laboratory or industrial
settings. A vision system that works beautifully under
structured, carefully orchestrated laboratory conditions
may be of little use in environment where people are
encouraged to interact naturally, without worrying about
which direction they are facing or even whether they stay
in the field of view of some camera.

This paper describes a new model for tracking people
in an IE in the context of Hal, our most recently
constructed intelligent room. In this model, locations in a
room that are likely to contain people are used as
reference points to interactively train a multi-camera
vision system. It learns to combine event predictions
from multiple video streams in order to locate people at
these reference points in the future. The system can also
dynamically track people as they move between these
locations. Because most rooms have natural attractors for
human activity, such as doorways, furniture, and displays,
the selection of training points is generally readily
apparent from the layout of the room.

Our interest is how to make it easy to set up and
maintain this type of vision system in an environment
such as Hal, which currently contains four fixed and three

17

computer-steerable cameras. The vision system described
here is intended to locate and track people in the room,
determine their postures, and obtain images of their faces
and upper bodies suitable for teleconferencing.

Although it may seem extravagant to outfit a small
room with so many cameras, the increasingly low-cost of
hardware for machine vision makes it quite feasible to do
so. However, installing a large number of vision systems
in a single room raises the following questions, which the
rest of this paper addresses:
1. How can the vision systems learn the types of events

they can see?
2. How can individual cameras be shared by multiple

vision systems?
3. How can we learn the correspondences among events

in the fields of view of different cameras?
4. How can the vision systems learn how their visual

fields overlap so they can reinforce each other
through communication?

5. How can we avoid the need to precisely calibrate the
cameras?

We argue in this paper for a particular
approach that has been valuable in the
development of Hal, which has been equipped
with computer vision systems specifically
designed for coping with the difficulties
expected to arise during unstructured
interactions. The primary components of this
system's architecture are its generalizability,
redundancy, and ability to learn spatial events
without requiring elaborate training scenarios.

We first discuss design level issues for the
system, including why we used computer vision
as opposed to other possible technologies.
Next, we describe Hal's layout, components,
and the types of applications intended to run
within it. Finally, we discuss the architecture of
the vision systems and how well this system has
satisfied our design goals.

2 Design Considerations

Research in Intelligent Environments has been heavily
influenced by the work done in Xerox PARC's
Ubiquitous Computing (UbiComp) Project [14,15].
UbiComp has avoided AI approaches to HCI for many of
the perceptory tasks at which computer vision excels.
Instead, hardware sensors - more reliable in the early
1990s but highly limited in their perceptory capabilities -

were employed to gather information about people
interacting with UbiComp systems. For example,
someone could be tracked in a building by wearing an
infrared-transmitting active badge. Similarly, a room
could determine that a person was sitting in a chair via a
pressure switch in the seat cushion.

However, machine vision techniques can do a far
better job of allowing IEs to understand the activities
going on within them than can simple sensing
technologies. For example, although a pressure sensor in
a chair may be able to register that someone has sat down,
it is unlikely to provide any other information about her,
such as who she is or which way she is looking; active
badges or motion detectors [9] can indicate that someone
has entered a room, but they can not, for example,
determine what objects she is pointing at while speaking.
Computer vision systems can provide much richer
descriptions of human activities, which are essential for
supporting natural interactions.

Non-vision technologies are also highly
encumbered - furniture must be constructed or
retrofitted with sensors and people must clip
devices onto their bodies for a UbiComp system
to be aware of them. Vision systems sense at a
distance, so that people and furniture do not
need to any special augmentation for an IE to
perceive them. They also have far greater
flexibility, in that once the video hardware is
installed, different image processing algorithms
can be applied to the video streams without
requiring changes to the system's physical
infrastructure. Finally, their video streams are
reusable by other systems, such as in
teleconferencing or surveillance applications.

2.1 Vision for IEs
Using machine vision systems for IEs, as
opposed to for more general-purpose HCI
applications, can change basic assumptions
about what types of data the systems are
providing. IEs frequently do not require high-
precision information, but they require that
information be supplied on a time scale
comparable to the events they are observing. In
addition, people are comfortable interacting in
very complex, unstructured environments, so it
is reasonable to require that the vision systems
be capable of functioning within them as well.

Much of the information needed in human-computer
interaction is qualitative in nature. For example, it may be
necessary to distinguish between a person sitting on a

18

chair, a person standing in front of the chair, and a person
standing by the door. This information fits more
accurately into a qualitative classification system than
into a system that gives only quantitative information
(such as position and size).

Since much useful information can be
described qualitatively and since qualitative
information should be obtainable without a
precise geometric model of the world, we insist
that precise external calibration be avoided in
our vision systems. By minimizing the amount
of required external calibration, we expect it

i t*sa

Figure 1A - A picture of Hal from the
doorway with several cameras labeled.

should be easier both to modify the
configuration of the system and to make it
robust with respect to small perturbations, such
as a camera being moved accidentally. We
view both of these characteristics as essential to
making intelligent environments viable in the
"real-world" - outside of controlled laboratory
conditions.

Information from machine vision systems
used in a noisy, unconstrained environment
often possesses a large degree of uncertainty.
Some sources of the uncertainty include
unfavorable lighting conditions and coincidental
color matches between objects - for example, a
person wearing a green shirt who happens to be
sitting in a green chair may seem to disappear to
many vision systems. One way to reduce the
amount of uncertainty in the system is to
replicate the systems and place additional
cameras at different locations in the

E§

j

D
3iS

Figure IB - Hal's floor plan with all camera
positions labeled.

environment. Confusing shadows that are
visible for one camera may not be problematic
for a second camera viewing the scene from a
different perspective, and the overlap between
foreground and background objects will likely
be different for them as well.

3 Interacting with Hal

Hal is a small room within our lab that doubles
as the first author's office (See Figures 1A and
IB). Hal is equipped with microphones, seven
video cameras, and a variety of audio-visual
output devices that it can directly control. The
cameras, microphones, and devices are
connected to a cluster of a dozen workstations in
an adjacent room. These workstations run a
distributed software agent system that controls
Hal's operation [2].

Hal was designed to explore a wide range of
interactions involving futuristic residential spaces -
stressing quality of life - and commercial spaces -
stressing information management. We have therefore
created applications in Hal that support entertainment,
teleconferencing, business meetings, military command
post scenarios, and information retrieval. (More in-depth
descriptions of these applications can be found in [3,5].)
Hal was carefully designed with respect to its intended
applications [3]. Because we were particularly interested
in creating teleconferencing and meeting recording

19

Figure 2 - Hal's layout. Cameras are circled in the image and individually
labeled. Sections of each camera's field of view are delineated with dotted lines.

systems within Hal, cameras had to be strategically placed
to obtain useful views of Hal's inhabitants. Many
visually based room tracking systems, such as [1], use
fixed, ceiling-mounted cameras in very large rooms,
because they can obtain "bird's eye" views and are less
sensitive to visual occlusion. However, cameras placed in
or near a ceiling cannot typically obtain images of people
that are suitable for other people to watch. It was
therefore necessary to place cameras inside Hal that were
able to obtain high-quality images of its inhabitants'
faces.

We also wanted these cameras to track people during
teleconferencing, so that users could freely move about
the room; people who are teleconferencing should not
need to concern themselves with staying in the field of
view of a particular camera. However, the proximity of
the users and teleconferencing cameras made it likely that
people might quickly move out of an individual camera's
field of view. We therefore opted for hybrid approach,
combining fixed "bird's eye" cameras outfitted with
wide-angle lenses - that could see large sections of Hal -
with steerable camera that could quickly focus on much
smaller sections of the room. Our goal has been to allow
these systems to intercommunicate to overcome their
inherent individual limitations.

Of Hal's seven cameras, two are dedicated to a special
purpose vision system that allows a user to manipulate a
computer's mouse cursor by pointing a laser pointer at
either of two projected video displays. These are labeled
A and B in the figure, and will not be discussed further in
this paper. Cameras C & D are fixed video cameras with
wide-angle lenses. Camera C is mounted in an overhead
bookshelf and views the couch and coffee table areas.
Camera D is ceiling mounted and overlooks the doorway.
Cameras E, F, and G are Sony EVI-D30 steerable
cameras under computer control. Each of these cameras
has a pan range of approximately 180 degrees and tilt
range of approximately 90 degrees. Figure 2 contains
several views of Hal and illustrates how the fields of view
of the cameras overlap.

The following scenario is an amalgam of
several illustrative interactions that currently run
inside Hal. (Capital letters in the following refer
to cameras, e.g., "E" is Camera E in the floor
plan.) The first author walks inside Hal. Hal
sees him via D and rotates whichever of E or F
is not otherwise occupied to obtain an image of
his face. Hal can currently detect the presence

20

Figure 3 - Sample panoramic background generated by Camera F from 18
source images and stored in transformed pan-tilt space. Pan range = 180° and tilt
rano? = fif>°

of faces in images but cannot yet distinguish
people by them. However, seeing a face in the
doorway increases the confidence that someone
actually just entered the room. Also, this image
can be videotaped or transmitted during a
teleconferencing session so that remote
participants can see who has entered. Hal says,
"Good evening Michael, you have three
messages waiting." Hal displays the messages
on one of the projected displays. As the user
walks to the couch and sits down, Hal will
attempt to track him via E or F. Once the user is
seated on the sofa, Hal sees him via C and keeps
F focused on his upper torso. As the user moves
around the sofa/coffee table area, Hal tracks him
with F. C is used to help steer F in case the user
moves out of F's field of view. If the user
moves too close to F and Hal can no longer
obtain a good image of him, Hal will switch to
E (or eventually perhaps G, which due to
temporary hardware limitations, does not
currently interoperate with E). Next, the user
lies down on the sofa. Supposing his clothing is
quite dark, he blends into the background so Hal
isn't sure if he has actually lay down. Hal will
then search for his face via C and will sweep F
to make sure it cannot see him sitting up. Hal
will then infer that he did indeed lie down; it
will next ask if he is going to relax for a little
while. If the user answers affirmatively, Hal
will dim the lights, close the drapes, and put on
Mozart softly in the background. After Hal
dims the lights, it will update its model of what
the room looks like.

4 Implementation

The current implementation of Hal's vision
systems contains three major parts. At the
lowest level is a common image processing
library that processes the video streams from
each of Hal's cameras (with the exception of A
and B, as mentioned above). In programmer's
parlance, the same "code" is running over all the
video streams. The data obtained from each
stream, in the form of a feature vector, is then
passed up to a higher-level system of Image
Processing Agents that build statistical cluster-
based models to uniquely classify the events
seen from each camera's viewpoint.
Recursively, these single-camera events are then
themselves temporally clustered, creating a
global qualitative model of how a single
perceptual event within Hal is simultaneously
perceived by any of the cameras that can see it.
For example, when Hal builds a model of
someone walking through the doorway, this
model contains what it expects Cameras D, E,
and F would see if they were watching someone
do so.

These multi-viewpoint models can then used to
increase confidence that events are being detected
correctly. For example, consider the case where Hal
thinks someone is entering the room because of data
obtained by Camera D. If Hal knows that this event
corresponds to a certain (pan, tilt) value for Camera E,
Hal can "borrow" this camera for a moment (presuming it
is being used for something else) and turn it to that

21

orientation to supplement that data obtained from Camera
D.

We now discuss each of the vision system's
levels in turn.

4.1 Low-level image processing
Each camera is connected to a separate
workstation equipped with a frame grabber and
running a low-level image-processing library.
This library transforms each incoming image
into a feature vector containing background
difference, skin detection, and face detection
information. (Optical flow values can also be
calculated for each video stream, but this is
currently only done for Camera D.) These
vectors are then available for the Image
Processing Agents described in the next section.
The low-level libraries process images
somewhere between 10-30Hz, depending on
what they are viewing. For example, an image
containing a face takes longer to process than an
image without one.

We discuss here the three primary
components of the feature vector and the optical
flow calculation.

Background Differencing
Although background differencing itself is a relatively
simple technique, the fact that the system uses steerable
cameras adds significantly to the complexity of the
process. Although it is straightforward to create an array
of background images for a small number of
predetermined (pan, tilt) values for a steerable camera, it
is not feasible to capture and store a background image
for each of the thousands of possible pan-tilt orientations.

It is possible, however, to completely span the
camera's viewable world using only a few dozen images.
By then performing appropriate coordinate transforms, it
becomes feasible to dynamically synthesize a background
for an arbitrary camera orientation. We currently use
eighteen images (two rows by nine columns of slightly
overlapping images) to span each camera's range of 180
degrees of pan and 60 degrees of tilt. The system uses
these images to create one large "panoramic" background
(Figure 3), which is stored in the transformed pan-tilt
space instead of x-y coordinates of a certain image
position.

A myriad of issues must be dealt with while building
panoramic backgrounds. This includes selecting an
appropriate scaling for the background that avoids
undersampling the images. The coordinate transform from
camera image x-y space to panoramic background pan-tilt

space also depends on several parameters associated with
the camera. Space limitations preclude detailed
discussion, but these include the camera's aspect ratio,
focal length, radial distortion, and precise axis of rotation.
For example, the cameras used by the system are not
ideal; they exhibit significant but consistent radial
distortion due to imperfections in the lenses. This type of
distortion can be modeled by determining a "center of
distortion" and by radially expanding or contracting the
image according to an empirically determined power
series. Although it was decided that empiric calibration
would be most expedient, at some point it may be easier
to automate much of the calibration using the procedure
described in [12].

Skin Color Detection
The second algorithm used by the low-level system is a
skin-color detection algorithm that operates independently
on each input pixel. Because skin color is determined by a
combination of the red hue in blood and the yellow-brown
hue of melanin, the hue of skin is restricted to a narrow
range of hues. To detect input pixels in this narrow range
of hues, the input RGB values were transformed into a
log-opponent color parameterization according to a
variant of the method described in [6].

Face Detection
The third algorithm that is applied to the input is a face
detection algorithm. The algorithm is a ratio template
algorithm developed by [11] and used in the Cog
humanoid robot [10]. This algorithm is quite
computationally efficient when compared to neural-
network approaches, and it performs reasonably well in a
cluttered environment. These features make it suitable for
human-computer interaction scenarios.

Optical Flow
A correlation-based optical flow algorithm compares
localized patches of an image to patches of a subsequent
image with a range of possible offsets from the original
patch. The best match in the subsequent image is
assumed to represent the location of the corresponding
patch in the new image, and the spatial offset between
patches in the two images corresponds to the optical flow.
Optical flow information is assumed to be the same as the
motion field of the image. This information is therefore
useful for detecting transient events such as entries and
exits. These events happen too quickly to be reliably
detected by the other low-level image processing
components.

22

4.2 Local Event Processing - Image
Processing Agents
The next level of the system is comprised of
Image Processing Agents, which uniquely
connect with the different low-level libraries
processing the incoming video streams. Each
Image Processing Agent receives a stream of
feature vectors corresponding to the visual input
of the camera with which it is connected. In
order to reduce the communication bandwidth
between the low-level systems and the Image
Processing Agents, which generally all run on
different workstations, background difference
and skin color information are not transmitted
for each pixel. Instead, the image is divided
into a 10x10 cell grid, and average values are
reported for each cell. Currently, up to two
faces can be reported for each image, where a
face notification consists of its size and location
in pan-tilt space. (The limit of two faces was
arbitrarily chosen to simply the communication
protocol and can easily be increased.)

Each Image Processing Agent therefore
receives a 209 dimensional feature vector,
consisting of 100 background difference values,
100 skin-tone match values, 6 faces values, the
center of the image in pan-tilt coordinates, and a
measure of the overall brightness of the image,
at a frequency of somewhere between 10-30Hz.

The agent uses these vectors to build
statistical models of the events its camera is
capable of detecting during a training session
described in the next section. After building
these models, it attempts to classify future
incoming data to determine if any of the
previously learned events reoccur. When they
do, this information is passed to the global event
processing system described in the next section.
The agent is also responsible for several other
tasks. The first of these is maintaining the
quality of its background image, against which
differences are computed to perform foreground
object segmentation. Persistently unrecognized
phenomena, such as a region being occluded
without skin-tones being present, can lead the
agent to incorporate that region into the

background model. Agents that are connected
to steerable cameras can also steer the cameras
to track moving objects that catch their
attention, even if these objects move away from
the location of a previously learned event. The
dynamic background synthesis performed by the
low-level library makes this behavior possible.

The Image Processing Agent constructs a
window w of approximately two seconds worth
of the most recently received feature vectors.
We will call the size of this window k, so
w =[v',...vi+k]. It uses this window to construct
and subsequently update two special vectors
after each new feature vector arrives. The first
is an mean vector vj =mean(vij,...,v

i/k). The

other is defined over the standard deviations of
the dimensions in the feature vectors,

:<7(V<, 71+*)• Event learning and

classification happens over these vectors, rather
than over the incoming feature vectors directly.

We define a local event £ as a tuple (v',<5")
of vectors constructed from a window observing
the event. By this, we mean that the physical
event corresponding to £ was ocurring in the
camera's foveal area while the window was
being constructed. Each agent builds up a set
of local events, LE, that it is capable of
distinguishing during a training process
discussed in the next session. (Each agent also
constructs at least one "null" event.) Once the
agent has been trained, it constantly attempts to
classify the event "contained" in the window as
one of its previously learned events.

To determine the similarity between a
currently observed window and a previously
observed event, we define the distance between
a window w (with v) and a local event
Ej =(vJ,ffJ)e LE, letting « = |v|, as:

1 distance (W,Ej) = -j= Y•
a +e

This function very much resembles a
renormalization according to a t-distribution
with zero mean and unit variance. However, that
is not our intended use for it. Rather, we are
using it as a means to calculate a weighted

23

distance between what has currently been
observed in the window w and some previously
observed event £_,-, where dimensions are

inversely weighted in proportion to how noisy
their signals are. The e factor is used to avoid
difficulties in case a particular dimension has
zero variance.

The agent selects minEeLE(distance(W,Ej))

as the most likely event to be occuring.
However, events can be partially activated, in
that multiple explanations for whatever is
currently being observed will be passed on to
the global event system discussed in the next
session. It is expected in this case that data
from other cameras will help disambiguate the
room-level event actually being observed. If an
agent is asked to verify whether a local-event is
occuring as part of this determination, it will
attempt to sense the event by forcing whichever
feature-vector dimensions it has control over to
take on the values associated with the event in
question. At present, this is limited to pan-tilt
values corresponding to the local event;
asserting these values causes the low-level
library to move the camera to that orientation.

4.3 Global Event Processing
Global events correspond to qualitative models of how a
single perceptual event within Hal is simultaneously
perceived by all of the cameras that can see it. There are
two mechanisms through which global events are created
and/or updated. The first is through an explicit training
scenario in which Hal guides users through a series of
interactions. The second is a more complicated
mechanism where Hal searches for statistically significant
temporal co-occurrences of events and infers they are
related.

Hal is built on top of a subset of a Room-Perception
Application Programming Interface (API) that describes
the types of events an abstract Intelligent Environment
might sense going on within it, which we simply call
room events. People writing applications for Hal
interface with the perceptual systems via this API, so they
can, for example, write code that refers to someone sitting
on the middle of couch without having any knowledge of
how the perceptual systems work or how this event is
recognized by the room. The subset of the API Hal
implements has a hierarchy of events within it, such as
"Room Enter," "Room Exit," "Sitting Down, "Sitting on
Couch," "Standing by Object," etc.

When Hal is initially configured, it leads the user
through a training scenario in order to learn what it is like
to observe these events. For each fixed camera, this is
simply a matter of determining whether there is an
unrecognized event in its field of view. The steerable
cameras, however, are swept through their range of pan-
tilt values in order to locate a new event. Once they have
found and centered it, they construct a local event model
as described above to represent it. For example, training
the "Room Enter" event occurs as follows. Hal says,
"Hello, please enter the room." The user then walks
inside and stands in the doorway. Hal finds them via
Camera D and says, "Please remain still for one
moment. " Hal then sweeps the steerable cameras looking
for an unrecognized event. As the cameras find and
center the user, Hal says "Aha! I've found you! Thank
you for training. " A more sophisticated approach might
involve the vision systems exchanging color histogram
information to insure they are indeed looking at the same
event. However, we assume that simultaneous new room
events do not occur during training, so there is currently
no need to resolve them.

By determining which local events are constructed
and/or activated while training a room-level event, Hal
builds qualitative models of the room event with reference
to them. If the user does something which triggers the
associated local-events of a room event, Hal triggers the
appropriate Room-Perception API event, such as
"Standing by bookcase," and sends it to any applications
that have registered they are interested in such events.

A natural extension of the system at this level would
be to build a Markov model of transitions among events
from observations of typical usage patterns. This model
could be used during event transitions to turn steerable
cameras preferentially towards events that are more likely
to occur, before they actually happen.

Room events can also be partially activated, meaning
some of their composite events have been triggered but
not with sufficient confidence to actually be sure the
event has taken place. Hal will then try to assert the non-
active local events according to the mechanism described
above to see if they are currently taking place. Simple
statistical confidence intervals over these local events are
then used to determine whether something of interest has
actually happened. Some care must be taken with this
mechanism to insure that events that are transient, such as
someone walking through a doorway, have not actually
completed by the time the steerable cameras turn to check
for them. For this reason, the overhead camera in the
doorway produces only optical flow information at 30Hz,
so that its local-events are activated as quickly as
possible. Within less than .5 seconds of someone walking
through the doorway, whichever steerable camera is free
to verify the event is already turning to look at it.

We are also interested in using this mechanism to
connect the room's visual perception with its other

24

sensory modalities. For example, we have empirically
determined that people tend to speak about objects they
are closer to and therefore we dynamically bias Hal's
speech recognition models with information obtained
from its tracking system. These biases are currently hand-
coded, but it seems feasible to learn them via temporal
correspondences in a manner very similar to how Hal's
visual event acquisition currently operates.

14.Want. R.; Schilit, B.; Adams, N.; Gold. R.: Petersen. K.;
Goldberg, D.; Ellis. J.; and Weiser. M. The ParcTab
Ubiquitous Computing Experiment. Xerox Pare technical
report.

15.Weiser, M. The Computer for the 21" Century. Scientific
American, pp.94-100, September, 1991.

References

1. Bobick, A.; Intille, S.; Davis, J.; Baird, F.; Pinhanez, C;
Campbell, L.; Ivanov, Y.; Schütte, A.; and Wilson, A. Design
Decisions for Interactive Environments: Evaluating the
KidsRoom. Proceedings o/the 1998 AAAI Spring Symposium
on Intelligent Environments. AAAI TR SS-98-02. 1998.

2. Coen, M. Building Brains for Rooms: Designing Distributed
Software Agents. In Proceedings of the Ninth Conference on
Innovative Applications of Artificial Intelligence. (IAAI97).
Providence, R.I. 1997.

3. Coen. M. Design Principles for Intelligent Environments. In
Proceedings of The Fifteenth National Conference on
Artificial Intelligence. (AAAI98). Madison, Wisconsin.
1998.

4. Coen, M. (ed.) Proceedings of the 1998 AAAI Spring
Symposium on Intelligent Environments. AAAI TR SS-98-
02. 1998.

5. Coen, M. The Future Of Human-Computer Interaction or
How I learned to stop worrying and love My Intelligent
Room. IEEE Intelligent Systems. March/April. 1999.

6. Forsyth, D. and Fleck, M. Finding Naked People, European
Conference on Computer Vision, Volume II, pp. 592-602.
1996.

7. Lien, J., Zlochower, A., Conn, J., Li, C, and Kanade, T.
Automatically Recognizing Facial Expressions in the Spatio-
Temporal Domain. Proceedings of the Workshop on
Perceptual User Interfaces (PUI'97). Alberta, Canada.
pp.94-97. 1997.

8. Lucente, M.; Zwart, G; George, A. Visualization Space: A
Testbed for Deviceless Multimodal User Interface.
Proceedings of the AAAI 1998 Spring Symposium on
Intelligent Environments. AAAI TR SS-98-02. 1998.

9. Mozer, M. The Neural Network House: An Environment
that Adapts to its Inhabitants. Proceedings of the AAAI 1998
Spring Symposium on Intelligent Environments. AAAI TR
SS-98-02. 1998.

lO.Scassellati, B. Eye Finding via Face Detection for a
Foveated, Active Vision System, Proceedings of the National
Conference on Artificial Intelligence, Madison, WI. 1998.

ll.Sinha, P. Object Recognition via image invariants: A case
study, Investigative Opthalmology and Visual Science, 35,
pp. 1735-1740. 1994.

12.Stein, G. Internal Camera Calibration using Rotation and
Geometric Shapes, Master's Thesis, Massachusetts Institute
of Technology, Cambridge, MA. 1993.

13.Stiefelhagen, R., Yang, J., and Waibel, A. Tracking Eyes
and Monitoring Eye Gaze. Proceedings of the Workshop on
Perceptual User Interfaces (PUI'97). Alberta, Canada.
pp.98-100. 1997.

25

A Context Sensitive Natural Language Modality for an Intelligent
Room

Michael Coen, Luke Weisman, Kavita Thomas, and Marion Groh

MIT Artificial Intelligence Lab
545 Technology Square
Cambridge. MA 02139

(mhcoen, luke, marion}@ai.mit.edu, kavita@cs.cmu.edu

Abstract. This paper describes the design and implementation of a natural language interface to a highly
interactive space known as the Intelligent Room. We introduce a data structure called a recognition
forest, which simplifies incorporation of non-linguistic contextual information about the human-level
events going on in the Intelligent Room into its speech understanding system. This aim of using context
has been to allow multiple applications—all of which support a relatively high degree of natural syntactic
variability—to run simultaneously in the Intelligent Room.

1 Introduction

This paper describes the design and implementation of the natural language interface to the MIT Artificial
Intelligence Lab's Intelligent Room Project [3,5]. The Intelligent Room explores natural interaction with
embedded computational systems. It has a host of computer vision and speech understanding systems that
connect it to ordinary, human-level events occurring within it.
In this paper, we are concerned with the overall design and implementation of the
Intelligent Room's support for natural language interactions. The main feature of this is
the recognition forest, a linguistic data structure that simplifies incorporation of contextual
information into the room's speech understanding system and allows the room's multiple
applications to independently access its speech modality. Our motivation for using context
is: to help manage the combinatorial explosion in processing time that followed the
incorporation of natural syntactic variability into our speech recognition system; to allow
for the incorporation of non-linguistic information into linguistic contextual model; to
disambiguate diectic references; and to provide spoken language input to coexisting,
independent applications.
In this paper, we present the recognition forest as a useful tool for creating spoken
language interfaces to intelligent, interactive spaces. We will also discuss how it
contributed towards satisfying the goals that shaped the design of the Intelligent Room's
natural language interface, including:

1. To support unimodal speech interactions, i.e. interactions that do not tie the user to a keyboard, mouse or
display.

2. To leverage off very strong notions of context inherent in room applications to allow for better speech
understanding.

This material is based upon work supported by the Advanced Research Projects Agency of the Department of
Defense under contract number F30602—94—C—0204, monitored through Rome Laboratory.

26

3. To allow multiple speech-enabled room applications to coexist without a heavyweight central controller.

4. To provide for dynamic sets of recognized utterances.

5. To employ only very shallow linguistic knowledge and representations.

The decision to minimize the amount of linguistic knowledge contained in our system was
made to facilitate the room's infrastructure and application development by a wide range
of people, particularly computer science undergraduates who have no formal exposure to
computational linguistics. Our system needed to be accessible by all researchers in the
project, regardless of their background. We believer that many of the issues discussed in
this paper will remain useful when applied to systems with more sophisticated linguistic
representations. Given the increasingly widespread interest in highly interactive,
computational environments [7], many other designers and implementers will be faced will
similar challenges, and we hope our approach will be generally useful for other systems.
Over the past three decades there have been significant research efforts devoted to the
development of natural language interfaces. We divide these into three distinct classes
based on the modality chosen for natural language interaction. The first consists of text-
only dialog systems, such as SHRDLU [12], Lunar [13], and the multitude of database
query systems, such as START [8]. In these systems typewritten text is used for input and
output. With the advent of improved speech recognition and synthesis, efforts were made
to integrate these technologies into natural language dialog systems—our second
category—such as those in [8,11,14]. However, with these the user is still expected to
interact with the system at a terminal where the display of queries and recognition results
are perused and then potentially disambiguated by the user. Many of these systems also
make use of "push-to-speak button," in order to allow the user to signal the speech
recognizer that the next utterance is to be treated as input to the system. The final class of
systems is those that operate only in the speech modality, such as SUNDIAL [1], and
Jupiter [3], two telephone communication systems for answering domain specific queries.
Our approach represents a significant departure from those described above. The choice of
the ability to operate in a voice-only modality separates it from the text-only and mixed
voice and screen systems. This departure requires an emphasis on careful planning and
structuring of dialog to take advantage of speech while also overcoming some of the
difficulties inherent in the speech modality. Our approach is different from that of the
other voice-only language projects in that: we are not tackling applications that
monopolize the user's attention or require excessive word knowledge; we allow people
interacting with the Intelligent Room to readily change application contexts; we place
more emphasis on speech recognition in noisy, multi-user environments where people are
primarily talking to one another; we seek to plan interactions with minimum intrusiveness;
and we provide an interface to multiple applications simultaneously. Our system is not
intended to be task or domain specific; it is used in the same way as a keyboard and
mouse—a general input device simultaneously used by many applications. It is a tool, not
an end in itself.

In the next section we briefly motivate and describe the Intelligent Room as the platform and motivation
for our work. Next, we present a user's perspective of the Intelligent Room. In section 4 we outline the
room's computational architecture and linguistic systems. Then we give several representative linguistic

27

interactions illustrating the concepts we have described. Finally, we discuss limitations inherent in our
approach and possible remedies.

2 The Intelligent Room

We now proceed to briefly describe the Intelligent Room as the platform for our research. More in depth
discussion of the room can be found in [6] and details of its multimodal resolution are contained in [5].
The Intelligent Room is a research platform for exploring the design of intelligent
environments [7]. The Intelligent Room was created to experiment with different forms of
natural, multimodal human-computer interaction (HCI) during what is traditionally
considered non-computational activity. It is equipped with numerous computer vision,
speech and gesture recognition systems that connect it to what its inhabitants are doing and
saying. The motivation for researching intelligent environments is to bring computation
into the real, physical world. The goal is to allow computers to participate in human-level
activities that have never previously involved computation and to allow people to interact
with computational systems the way they would with other people: via gesture, voice,
movement, and context.
The Intelligent Room is a space populated by computer controlled devices; these include
overhead LCD projectors and displays, audio/visual multiplexers, VCRs, drapes, blinds,
stereos, steerable video cameras, etc. The video cameras are used by the room's computer
vision systems. These vision systems are detailed in [6], but of relevance here are the
following: a person tracking system that can locate people in real-time as they move about
the room; gesture recognition of both finger and laser pointing on either of the room's
projected LCD displays; and a system that specifically notices when people sit down on
particular pieces of furniture.
Other research in intelligent environments [2,9,10] has focused more on development of
computer vision and other sensing technologies at the expense of linguistic interactions.
We believe, however, that language is fundamental to having meaningful and complex
interactions with these sophisticated, interactive spaces. In particular, we are interested in
speech understanding systems that function more like a language modality than a voice
simulation of a keyboard or mouse. Although the Intelligent Room's current linguistic
systems require a great deal of development before they near this goal, we believe our
approach is an extensible first approximation.

3 User Interactions

People in the Intelligent Room wear wireless lapel microphones that transmit to the speech understanding
system described below. By default, the room ignores the spoken utterances of its inhabitants, which are
generally directed to other people within the room. This state is known as "the room being asleep."2 To
obtain the room's attention, a user stops speaking for a moment and then says the word "Computer." The
room immediately responds with an audible, quiet chirp from an overhead speaker to indicate it is paying
attention. The user then has a two second window in which to begin speaking to the room. If the room is
unable to recognize any utterances starting within that period, it silently goes back to sleep until explicitly

'' The room's vision systems continue to respond to users even when it is not listening for their verbal input.

28

addressed again. However, if what the user says is recognized, the room responds with an audible click and
then under most circumstances it returns to sleep. This hands- and eyes-free style of interaction coupled with
audio feedback allows a user to ignore the room's computational presence until she explicitly needs to
communicate with it. There is no need to do anything other than preface spoken utterances with the cue
Computer to enable verbal interaction. Thus, a user can interact with the room easily, regardless of her
proximity to a keyboard or monitor. Additionally, explicitly cueing the room minimizes the likelihood that
extraneous speech or noise will incorrectly trigger a recognition event. Importantly, it also allows detection
of non-recognition events, i.e. times when the room is not able to understanding something the user is
explicitly trying to convey. In the event the room erroneously wakes up due to an incorrect recognition
event, it will either go back to sleep automatically when the two second window expires or the user can
explicitly tell it to "go to sleep" upon hearing the wake-up chirp.
When the room is awake, it is listening for a specific set of utterances contained in its
recognition forest, a data structure described in the next section. Under appropriate
circumstances, users can also freely and continuously dictate expressions to the room
unconstrained by any grammar or rule set. This capability is used, for example, during
information retrieval queries (such as a web search) for which it is unreasonable to expect
that the room's grammars already contain the sought after phrase. In these interactions, the
room repeats the final utterance back to the user to verify correct recognition. The lag time
between user speech and room verification is extremely small, and this mode of interaction
has proved to be quite useful provided input is short in length. We note here that the room
is responsible for switching between the constrained and diction speech modes; users do
not explicitly change this state.
The room can also remain awake listening for utterances. Someone intending on a
prolonged series of verbal interactions can simply tell the room to "stay awake." The room
continues to provide an audible click after recognized statements, but these statements no
longer need to be preceded by the spoken Computer cue. In addition, the room can wake
itself up if it expects an utterance from the user for some reason. For example, when the
room asks the user a question, it will stay awake for several seconds waiting for an answer.
If that period ends without a response being given, the room provides an audio timeout
signal to indicate that it is going back to sleep.

4 Speech Understanding

In this section we present the Intelligent Room's speech understanding system. We begin with a discussion
of the interaction between the software agents that control the operation of the room and the room's set of
recognition grammars.
The Intelligent Room is controlled by a modular system of approximately 100 distinct,
intercommunicating software agents that run on several networked workstations. These
agents' primary task is to connect various components of the room (e.g., vision and speech
recognition systems) to each other as well as to internal and external stores of information
(e.g., a person locator or an information retrieval system). Essentially, these agents are
intelligent computational glue for interconnecting all of the room's components and
moving information among them.
The Intelligent Room listens for continuous speech utterances contained in a forest (or set)
of multiple grammars, which we call the recognition forest. Each grammar in the
recognition forest is created by one of the room's software agents (see Figure 1), which

29

receives notification when any utterance contained in one of its grammars is heard. Agents
do not necessarily know nor need to know of any other grammars or agents. (We note for
clarification that a single agent is allowed and actually encouraged to create multiple
grammars.) The notification message for a recognized utterance contains a parse tree,
which the agent can manipulate to determine its content. In the recognition forest, a
grammar is called "active" if the room is currently listening for it and "inactive" otherwise.
Active grammars are rank ordered in terms of their expected likelihood of being heard.
Fundamental to our design is that all of the grammars must be constrained to highly
specific contexts among which some component of the Intelligent Room is capable of
distinguishing. Instead of keeping a single enormous recognition grammar active, the
room collectively keeps subsets of small grammars active in parallel, given what it

Fig. 1. Software agents creating the forest of context free recognition grammars. Each
small triangle represents a grammar, and each face represents a software agent. Active
grammars are lightly colored. Inactive grammars are crossed out. The uppermost,
demarcated region contains universal grammars that are always active.

currently expects to hear. The key assumption here is that certain types of utterances are
only likely to be said under particular circumstances. These may be related to where
someone is spatially, the history of her previous interactions, how she is gesturing, what
devices in the room are doing, etc. At the simplest level, this can range from the
implausibility of someone saying "stop the video," when none is playing, to more complex
dependencies, such as the meaninglessness of asking "What's the weather there?" if no
geographic entity has somehow been brought to the room's attention.
The context-dependency of these grammars is not contained within the linguistic
formalism itself, which allows us to use an extremely simple representation. Rather, the
room's software agents are responsible for setting and modifying the activation states of
grammars they create based on whatever information the room's other software agents can
provide about current goings on in and state of the room. (See Figure 2.) For example, if
the room starts showing a video clip, the agent that controls the showing of videos
activates the grammars that involve VCR operation. When the clip stops, these grammars
are in turn deactivated. More interesting cues can involve the location of someone inside
the room. For example, the fact that someone has moved near an interactive displayed
map is sufficient reason for the room to pay increased attention for spoken utterances
involving geographic information. However, until that cue is received, it seems quite
reasonable not only for the room to ignore such requests but to not recognize them at all
especially given the error rate of current speech recognition technology. We note there
may be cases where this is inappropriate; for example, the room might alternatively need to

30

recognize out-of-context utterances in order to provide guidance to a user. We are
investigating techniques for dealing with this, such as having the room iteratively broaden
the set of active grammars and proactively offer assistance in case the user's speech is not
being recognized.
When users shift to a new application context, the system lowers the relative rankings of
and eventually deactivates grammars from the previous contexts according to a least-
recently-used strategy. Thus, agents need not explicitly deactivate all of their grammars
nor even know all appropriate circumstances for doing so.
Notions of context can also help adjust expected probabilities of utterances. Even in
systems where all utterances are valid at all times, it is generally not the case that all
utterances are equally likely at all times. For example, tracking context can help
disambiguate the output of bigram-based speech recognition systems that return the
probabilistically weighted N-best set of utterances for each recognition event. We used
this scheme to process the results returned by the Galaxy System [14], which was the first
speech recognition system used in the early days of the Intelligent Room.
We have found it useful to have several different notions of ongoing room context for
determining which grammars are active at any given moment. However, no single agent
defines "the context" but rather the context is a product of many loosely connected entities.
In ranked order, these consist of the following:

1. Always active grammars - These are for low-level control and providing feedback to the room. These
grammars allow direct manipulation of room state; we have found it essential for users to feel they control
the room's physical infrastructure if they are to feel comfortable interacting with it. These grammars also
allow the manual adjustment of various room parameters in the event of incorrect data from one of the
room's input modalities.

2. Context shifting grammars - These are explicit cues for the room to change its context. They generally
start new room activities and automatically lead to changes in the contents of the next two categories.

3. Current applications' grammars — These are application specific verbal interactions with the room given
its current state. The room frequently modifies these grammars while it is running.

4. Previous applications' grammars — These are for interacting with previously run applications. These are
particularly useful in case of inadvertent or incorrect context shift or if some device failed to respond
appropriately and must be corrected via verbal interaction. Backgrounded tasks often have grammars here
so they can be quickly recalled and resumed.

Agents can also modify the structure and content of an extant grammar. This ability is
used currently only for inserting and deleting noun phrases to reflect newly obtained

time=i time=i+l

Fig. 2. A transition in the forest of grammars. An agent can activate and deactivate its
grammars based on context changes in the Intelligent Room. Notification of context
changes comes in the form of messages from other room agents.

31

information. This can be gotten from: the user verbally dictating new phrases to the room;
mechanical extraction from other sources, (e.g., anchor link text in web pages); or the
room applying machine learning techniques to augment its vocabulary (as discussed
below).
Another advantage of the distributed nature of the grammars is individual agents can
monitor their small piece of the overall context in a very simplistic fashion. For example,
the VCR agent can pay attention to events only relevant to knowing whether the VCR is
part of the context or not, and modify its associated grammars accordingly. This avoids
the problem of clearly defining the overall context, and also eliminates the need for control
logic for deciding which grammars should be active when.

Underlying Speech Technology and Computational Complexity

For processing spoken utterances, we use IBM's ViaVoice speech recognition system. ViaVoice is a
commercially available system primarily used for continuous speech dictation. This, with its relatively low
word accuracy for single word and short utterances, would have been an intolerable speech interface to the
room. However, ViaVoice also supports explicit construction of continuous speech, context-free recognition
grammars, which allow for much higher degrees of recognition accuracy. Via its Java interface, it also
provides control over low-level aspects of its behavior to external applications, which makes it ideal for
incorporating into other systems.
We wanted the Intelligent Room's recognition grammars to be reasonably unconstrained.
In particular, we wanted to allow people to interact with the room without memorizing
scripts of recognized utterances or lists of permissible syntactic constructions. However,
we found that as our grammars became increasingly large, speech recognition accuracy fell
correspondingly. As room grammars started to support more than a few thousand
individual utterances, recognition accuracy dropped below acceptable levels.
There is a clear tradeoff between making the room's recognition grammars sufficiently
large so that people can express themselves somewhat freely versus making the grammars
small enough so that the system runs with high accuracy and in real-time. Thus, we
decided to make use of the natural context specificity in room applications so that agents
could dynamically activate different subsets of grammars depending on the context of the
activity within the Intelligent Room.

5 Sample Interactions

The Intelligent Room supports a variety of narrow application domains, all of which can run simultaneously.
The collection of all these domains in turn gives an extremely broad and flexible 'domain' encompassing a
wide range of tasks. The distributed, independent control of the recognition forest allows for this—there is
no need for a centralized controller. The room's applications range from simple voice control over physical
devices to more complex multimodal scenarios involving position, gesture tracking and spoken dialog. We
first outline these domains and then present two applications in more detail:

1. Manual control over devices - These include the Intelligent Room's lights, blinds, drapes, VCRs, video displays,
stereo components, etc.

2. Manual interaction with modal subsystems - We have found it extremely useful to have direct verbal interactions with
the room's modalities. These can be used to gather information about what the room is observing, to modify internal
representations of its state, or to correct a perceptual error. It is also of enormous benefit to be able to verbally interact

32

with the room's vision systems while developing or debugging them, because it is generally impossible to manually
interact with them at a workstation while remaining in the camera's foveal areas.

3. Information access - There are many types of these interactions, including web browsing, weather reporting,
accessing an online video collection, querying Haystack (a personal information manager), and the information
retrieval system described below. The room also functions as a spoken language front-end to START, a natural
language query database [9],

4. Presentation manager - This allows the Intelligent Room to assist in multimedia presentations and is a demonstration
of the room's information management capabilities. A lab tour guide agent that uses this application for presenting a
broad overview of our laboratory's research to visitors has been previously described in [5].

5. Command post - This application provides the means to test full integration of all our modal subsystems and to
experiment with different techniques for performing multimodal reconciliation. It is a mock command center for
planning hurricane disaster relief.

We now present two primarily linguistic interactions with the Intelligent Room. They are
annotated with the changes made to the recognition forest to reflect the course of ongoing
interactions. The first of these is the above-mentioned command post. It makes use of two
interactive projected displays that respond to finger pointing gestures. The second
interaction is a primarily unimodal dialog that allows users to interactively refine a
document retrieval query.
In the following interaction the user is attempting to plan disaster relief for a hurricane in
the Virgin Islands.

Command Post:

User: "Computer, stay awake. "
[The room will now listen for utterances without requiring they be prefaced by the word Computer.]
[The person's approach of projected displays causes the room to pay attention to statements involving them. This is
illustrated in Figure 3.]

User: "Show me the Virgin Islands. "
Room: "I'm showing the map on the display next to you."
[Room shows map on video display closest to the user.]
[Room activates grammars associated with the map.]
[User now points with his finger at St. Thomas.]

[Room adds nouns (such as city names) relating to St. Thomas to active grammars.]
[Room now considers St. Thomas the default geographical entity.]
User: "Zoom in."
[Room zooms in to St. Thomas.]
User: "How far away is Hurricane Marilyn ? "

Room: "The distance between Hurricane Marilyn and the city of Charlotte Amalie located in St. Thomas is
145 miles."

User: " Where's the nearest disaster field office ? "
[Room highlights them on the map.]

Room: "The St. Thomas DFO is located one mile outside of Charlotte Amalie. There is a new weather
forecast available. Do you want to see it?"

[Room activates a grammar containing possible expected responses for this question.]
User: "Yes, show me the satellite image."
[Room displays image on adjacent projected display.]
[Additional weather grammars are now activated.]

The following interaction is an example of the user dynamically switching contexts while in the midst of
interacting with the Intelligent Room. The room has an information retrieval system that helps users refine
their queries by asking them questions that maximally disambiguate it. These questions are determined by

33

searching a document tree obtained from the Alta Vista web search engine for phrases with the highest
entropy levels.

Information retrieval:

User: "Computer, I need information. "
[Because user didn't specify a topic, room will ask for it to be dictated.]
Room: "About what? Please tell me."
User: "Software agents."
Room: "Is software agents correct?"
User: "Yes."

[Room will now remember this phrase in the context of information retrieval to allow recognition of it in the future.
Other agents might eavesdrop and also add this word for their own purposes, in an attempt to anticipate the user's
eventual needs.]
Room: "Thank you. Please wait a moment... Are you interested in HCI, Research & Indexes, or General

AI?"
[Room activates a grammar of expected responses based on these topics.]
User: "I'm interested in HCI. "

[User can respond with continuous speech even though the phrase "H C I" was not in any room grammar before this
interaction, since it was just added.]

[Above constructed response grammar is deactivated.]
Room: "Okay, are any of these documents of interest? I will put them on the left display."

[Room displays document list on wall.]
[Room activates a response grammar that incorporates the titles of displayed documents.]

User: "Please move them to the display near the window."
[Room does so]

The above examples illustrate how the room manages the recognition forest via data from both its perception
subsystems and from expectations of what the user is likely to say in a given situation. This allows the room
to approximate natural linguistic interactions with the user. Of course, it is still somewhat stilted, and the user
cannot make complete non-sequiturs. Overall, however, the main problem we have is convincing the user to
push the limits and speak naturally, rather than linguistically downsizing and second-guessing the room's
capabilities, but this fault is prevalent in most, if not all, current speech understanding systems.

6 Achieving Design Goals

We review the design goals presented in the first section, considering not only how well they were achieved,
but possible remedies for where our approach was unsuccessful.

A language modality
A key aspect of the Intelligent Room is for an occupant to have full access to all of the room's computational
power regardless of where in the room she is. She should not need to type at a particular keyboard nor
interact with a particular display to interact with the room, and in fact, the room does not have a keyboard or
mouse within it.

Therefore, we decided that in many circumstances speech interactions had to be unimodal. It could not be
the case that the room would need to display candidates for recognized utterances, thereby allowing the user
to select among them or to disambiguate didactic references. This is contrasted with the approach of [11,14]
where users provide critical feedback during the recognition process via a graphical user interface. Our
approach of having the room ask the user when it is unsure of something can be somewhat intrusive, but it is
certainly no more so than a graphical interface.

34

Context sensitivity
We wanted to make use of context in terms of both the room and user's states to be able to both resolve
diectic references and control sets of possible utterances and who should receive those utterances. As in
most speech understanding efforts, we wanted to support some measure of natural syntactic variability on the
part of a person interacting with room. Our intent was to leverage off the well-defined notions of context
inherent in the Intelligent Room's application domains to keep the total active grammar size small at any
given time. This can be enormously frustrating if the room inappropriately deactivates a grammar to which
the user would still like to refer. We are currently exploring techniques for dealing with this, such as
reprocessing the spoken audio signal under an iteratively broadened set of grammars.

Non-static recognition sets
We sought to avoid limiting the room to a static set of recognition grammars. It would not have been
reasonable to suppose that we could determine everything in advance users would want to say, and it would
have made routine tasks like information retrieval difficult, if not impossible.
The ability of agents to change grammars on the fly has proved to be extremely useful, in
applications such ranging from web browsing, where link anchor text is captured, to
information retrieval, which typically involves an iterative query refinement process. The
ability of the room to incorporate user-dictated noun-phrases into its recognition grammars
is one of the capabilities that most impresses new users.
On a larger scale, adding agents should be easy. By having individual agents control their
own grammars and activation states, agents can indeed be added quickly and without
worry as to their disrupting other agents' interfaces.

Simplicity
Finally, we were also interested in employing very shallow linguistic knowledge during implementation to
minimize the knowledge engineering problem. Given that new room applications are being created on a
regular basis, it is not possible to build carefully handcrafted linguistic models of expected input. Speech
orientated agents have proliferated markedly since our system came up, to a point of fault. Speech is such a
natural and easy modality that the temptation to solve all problems with it has distracted us from really
striving for a multi-modal system that pays attention to harder to discern inputs, such as gesture.
Future work on the system includes incorporating a machine learning mechanism into the
recognition forest so that it can learn the probabilities of individual grammars be used in
particular application contexts. We are also interested in learning the transition
probabilities among the grammars, to better predict activation states without requiring
explicit action be taken by the room's software agents.

7 References

[1] Andry, F., Fräser, N.M., McGlashan, S., Thornton, S., and Youd, J. Making DATR Work for Speech: Lexicon
Compilation in SUNDIAL. Computational Linguistics, 18(3), pp. 245-267. 1992.
[2] Bobick, A.; Intille, S.; Davis, J.; Baird, F.; Pinhanez, C; Campbell, L.; Ivanov, Y.; Schütte, A.; and Wilson. A.
Design Decisions for Interactive Environments: Evaluating the KidsRoom. Proceedings of the 1998 AAAI Spring
Symposium on Intelligent Environments. AAAI TR SS-98-02. 1998.
[3] Chung, G., and Seneff, S. Improvements in Speech Understanding Accuracy Through the Integration of Hierarchical
Linguistic, Prosodic and Phonological Constraints in the Jupiter Domain, Proc. ICSLP '98, November 1998.
[4] Coen, M. A Prototype Intelligent Environment. In Streitz, N., et al. (Eds.), Cooperative Buildings - Integrating
Information, Organization, and Architecture. Proceedings of the First International Workshop on Cooperative Buildings
(CoBuild'98). Lecture Notes in Computer Science. Springer: Heidelberg. 1998.
[5] Coen, M. Building Brains for Rooms: Designing Distributed Software Agents. In Proceedings of the Ninth
Conference on Innovative Applications of Artificial Intelligence. (IAAI97). Providence, R.I. 1997.

35

[6] Coen, M. Design Principles for Intelligent Environments. In Proceedings of The Fifteenth National Conference on
Artificial Intelligence. (AAAI98). Madison, Wisconsin. 1998.
[7] Coen, M. (ed.) Proceedings of the 1998 AAAI Spring Symposium on Intelligent Environments. AAAI TR SS-98-02.
1998.
[8] Federico, M. and Vemesoni, F. "A speech understanding architecture for an information query system". Proceedings
of EUROSPEECH 95, Madrid, Spain, 1995.
[9] Katz, B.. Using English for Indexing and Retrieving. In Artificial Intelligence at MIT: Expanding Frontiers.
Winston, P.; and Shellard, S. (editors). MIT Press, Cambridge. MA. Volume 1. 1990.
[10] Mozer, M. The Neural Network House: An Environment that Adapts to its Inhabitants. Proceedings of the AAAI
1998 Spring Symposium on Intelligent Environments. AAAI TR SS-98-02. 1998.
[11] Stock, O., Carenini, G., Cecconi, F., Franconi. E., Lavelli. Magnini, B., Pianesi, F., Ponzi. M., Samek-Lodovici, V..
and Strapparava. C. ALFRESCO: Enjoying the Combination of Natural Language Processing and Hypermedia for
Information Exploration. In Maybury. M. (ed.), Intelligent Multimedia Interfaces. The MIT Press, pp. 197-224.
[12] Winograd, T. Five lectures on artificial intelligence. Technical Report, Stanford-CS, Number AI Memo 246,
Stanford University, 1974.
[13] Woods, W.. Kaplan, R„ and Nash-Weber, B. The Lunar Sciences Natural Language Information System: Final
Report. Technical Report, Bolt Beranek and Newman, Number 2378, June 1972.
[14] Zue, V. Human Computer Interactions Using Language Based Technology. IEEE International Symposium on
Speech, Image Processing & Neural Networks. Hong Kong. 1994.

36

Meeting the Computational Needs of Intelligent Environments: The
Metaglue System

Michael H. Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen Peters, and Peter Finin.

MIT Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

mhcoen@ai.mit.edu

Abstract. Intelligent Environments (IEs) have specific computational properties that generally
distinguish them from other computational systems. They have large numbers of hardware and software
components that need to be interconnected. Their infrastructures tend to be highly distributed, reflecting
both the distributed nature of the real world and the IEs' need for large amounts of computational power.
They also tend to be highly dynamic and require reconfiguration and resource management on the fly as
their components and inhabitants change, and as they adjust their operation to suit the learned preferences
of their users. Because IEs generally have multimodal interfaces, they also usually have high degrees of
parallelism for resolving multiple, simultaneous events. Finally, debugging IEs present unique challenges
to their creators, not only because of their distributed parallelism, but also because of the difficulty of
pinning down their "state" in a formal computational sense. This paper describes Metaglue, an extension
to the Java programming language for building software agent systems for controlling Intelligent
Environments that has been specifically designed to address these needs. Metaglue has been developed
as part of the MIT Artificial Intelligence Lab's Intelligent Room Project, which has spent the past four
years designing Intelligent Environments for research in Human-Computer Interaction.

Introduction

Research on highly interactive spaces, generally known as Intelligent Environments, has
become quite popular recently. Although their
precise applications, perceptual technologies, and control architectures vary a great deal
from project to project, the raisons d'etre of these systems are generally quite similar.
They are aimed at allowing computational systems to understand people on our own terms,
frequently while we are busy with activities that have never before involved computation.
EEs seek to connect computational systems to the real world around them and the people
who inhabit it.
This paper presents what we believe are general computational properties and requirements
for EEs, based on our experience over the past four years with the Intelligent Room Project
at the MIT Artificial Intelligence Lab. Although many of the published descriptions of IEs
[4] differ in their particulars, it is clear that we have not been alone in confronting some of

This material is based upon work supported by the Advanced Research Projects Agency of the Department of
Defense under contract number F30602—94—C—0204, monitored through Rome Laboratory.

37

the frustrating aspects of engineering these complex systems. Based on this experience, we
have developed Metaglue, a specialized language for building systems of interactive,
distributed computations, which are at the heart of so many IEs. Metaglue, an extension to
the Java programming language, provides linguistic primitives that address the specific
computational requirements of intelligent environments. These include the need to:
interconnect and manage large numbers of disparate hardware and software components;
control assemblies of interacting software agents en masse; operate in real-time;
dynamically add and subtract components to a running system without interrupting its
operation; change/upgrade components without taking down the system; control allocation
of resources; and provide a means to capture persistent state information.

Metaglue is necessary because traditional programming languages (such as C, Java, and Lisp) do not
provide support for coping with these issues. There are currently several other research systems for creating
assemblies of software agents [7,8,9], which provide low-level functionality, e.g., support for mobile agents
and directory services. These features are necessary but not sufficient. Because Metaglue provides high-
level tools specifically relevant to creating software controllers for IEs, we hope to make it available for more
widespread use by the IE community.
Much of our discussion will focus on Hal, our most recently constructed Intelligent Room
[3,5], where approximately 100 Metaglue agents control Hal and interconnect its
components. However, we believe the issues raised here extend beyond the particulars of
Hal and are important for a wide range of intelligent environments.
Hal is a small room within our lab and is equipped with microphones, seven video

cameras, and a variety of audio-visual output devices that it can directly control. Hal was
designed to explore a wide range of interactions involving futuristic residential spaces -
stressing quality of life - and commercial spaces - stressing information management. We
have therefore created applications in Hal that support entertainment, teleconferencing,
business meetings, military command post scenarios, and information retrieval.
Next, we expand on our list of computational properties for IEs and examine the reasons
behind them. We then discuss design considerations of the Metaglue system, and how it
specifically addresses the perceived needs of IEs. In this, we directly trace how the issues
raised in the next section are satisfied by capabilities incorporated into Metaglue. Finally,
we close with an evaluation of the Metaglue system and directions for future research.

Computational Properties of Intelligent Environments

Intelligent Environments by and large share a number of computational properties due to commonalties in
how they internally function and externally interact with their users. Of course, not every IE will identically
share all of these characteristics, but we believe examining them even briefly makes concrete many of the
issues that IE designers are faced with and should address directly. We not only hope to further discussion
on these issues in the IE community, but to motivate the development of other general purpose tools such as
Metaglue.
We note that when multiple people are allowed to interact simultaneously with a single IE,
many of the issues discussed below are greatly exacerbated. Space limitations preclude
addressing this issue in detail.

38

Distributed, modular systems need computational glue

Intelligent Environments contain a multitude of subsystems comprising their perceptual
interfaces, software applications, hardware device connections, and mechanisms for
internal control. Even though each IE is created in its own way for its own purpose, IEs
are generally built out of similar components.
Thus, IEs require some way to glue all of these components together and coordinate their
interactions. These components also generally cannot co-exist on a single computer, due
to hardware constraints and the need for environments to respond in real-time to their
users. It is not uncommon for individual computer vision or speech understanding
applications to consume the resources of an entire workstation, and there is no reason to
believe this exclusivity will be diminished as processor speeds increase in the future.
Many of these systems perform progressive real-time searches that naturally generalize to
consume all increases in available computational power.
Frequently, these components, either off the shelf or research programs in their own right,
are not designed to work together, so not only must they be connected, but there needs to
be some way of expressing the "logic" of this interconnection. In other words, inter-
component connections are not merely protocols, but must also contain the explicit
knowledge of how to use these protocols. Thus, viewing the connections simply as
Application Programming Interfaces (APIs) is insufficient. For example, consider
connecting a speech recognition system and a web browser, so that users can navigate links
by speaking the text contained in them. Here, the computational glue would include a
mechanism that dynamically updates a recognition grammar with the link text whenever
the user goes to a new web page; simply having APIs to both of these applications is
necessary but not sufficient.
More generally, enormous amounts of control code go into building IEs, much of it dealing
with how connections among its pieces should be managed. (See [1,2].)

Resource management is essential

Interactions among system components in an IE can be exceedingly complex. Resources,
such as video displays or computational power, can be scarce and need to be shared among
different applications. For example, in Hal, multiple computer vision systems share
individual video cameras because they are a relatively expensive resource [6]. Conflicts
can occur when multiple applications in an IE all want to display information on a single
video display or speak to the user simultaneously. One of the largest surprises while
developing Hal was that even seemingly simple issues, such as displaying a video, have
wide spread repercussions on other parts of the running system because their resources are
pulled out from under them. We discuss this at greater length in the next section. Finally,
even in an environment with ample resources for a single user, conflicts can unknowingly
arise when multiple people attempt to interact with it simultaneously.
Thus, IEs need sophisticated resource management capabilities, particularly to let them
scale properly as new applications and capabilities are added.

39

Configurations change dynamically
IEs can be highly dynamic systems. In the prescient words of Weiser - referring to
Ubiquitous Computing but equally relevant to IEs - "New software ... may be needed at
any time, and you'll never be able to shut off everything in the room at once ...
functionality may shrink and grow to fit dynamically changing needs" [12]. People may
come and go at will, bringing with them devices such as PDAs that temporarily connect
with an IEs existing computational infrastructure.
In a developing system such as Hal, new hardware and software components are
incorporated on a regular basis. It should be possible to add them to a running system
without restarting unrelated components. In fact, under many circumstances, new
permanent components should dynamically integrate themselves into an IE without
interrupting its operation at all.
Even within the confines of a static IE, users may readily switch between different aspects
of its functionality. For example Hal supports teleconferencing and information
management applications and users readily switching between the two is quite natural;
often during meetings the need arises to get more information about something. These
"context" changes can have far reaching effects. For example, an IE may need to
simultaneously start new underlying applications, activate different speech recognition
grammars, and modify the configurations of other perceptual systems.

State is precious
Not only may new components need to be incorporated into a running IE, but pieces of a
running system may need to be reloaded into it as well. As with any other software
engineering effort, creating IEs require an iterative edit-recompile-run process while
testing new features and eliminating bugs. However, if the entire system had to be
restarted each time one of its components changed, development would be prohibitively
time-consuming. Our Hal environment has literally dozens of hardware and software
components connected to approximately 100 Metaglue agents. Having to bring this system
completely down to modify it would long ago have made further development a cause of
endless frustration.

Furthermore, IEs acquire state through interactions with users. Attempting to trace a bug by forcing a
person to repeat a sequence of interactions that may have spanned several hours would be outrageous. To
exacerbate the problem, state is acquired not only through human interactions, but also through any activities
Hal has engaged in, such as information retrieval. A weather report or CNN headline that caused Hal to take
some action may have long since changed and is not recoverable.
The most critical part of Hal's state comes from information it learns while observing its
users. Hal has several machine learning systems for learning about users' preferences and
activities. These systems have no straightforward way to unlearn and return to a previous
coherent state. Checkpointing in the style of reliable transaction systems can partially
ameliorate these problems with respect to the local state of individual components.
However, when IEs are asynchronous and distributed, repeating a particular global state
can be, practically speaking, impossible to achieve. (One technique we have been
investigating is allowing an IE to essentially simulate itself by replaying previously
observed and recorded events.)

40

Thus, there is a clear need for an IE's software architecture to permit a kind of dynamism
rare in conventional computational systems. We would like to stop, modify, and reload
components of a running system and have them reintegrate into the overall computation
with as much of their state intact as possible.

IEs model the parallelism of the real world
Supporting natural human computer interaction requires that IEs have some handle on
multiple ways that a user may interact with them. People speak, gesture, move, and emote
simultaneously, and IEs need to have some capacity to cope with this, even on the part of a
single user. This is not to say they need to understand the full range of human discourse
to be useful. Far from it, IEs that consistently - and most importantly, predictably -
understand a small subset of interactions are far preferable from an HCI perspective to
ones that always leave users guessing if some particular input will be understood.

Nevertheless, IEs generally have multimodal interfaces which requires they have sufficient parallelism for
resolving multiple, simultaneous events. For example, if a user walks to a displayed map, points somewhere
and says, "What's the weather here today?" and then immediately walks away, the system must be able to
discover where they were pointing when they said the word "here." Dealing with multiple users
simultaneously again simply exacerbates the problem.
Thus, IEs need at least as much parallelism as the phenomena they are trying to
understand. In fact they may need a great deal more for background processing, which
leads to the next item.

Real-time response
It almost goes without saying that IEs need to be responsive to their users. Particularly due
to the fact that many IEs do not have traditional computer monitors so users can get a
handle of the system's inner activity, it is astonishingly frustrating when an IE does not
respond quickly to user input. This is another point supporting the basic need for parallel
architectures in an IE. The parts of the system that acknowledge and react to users must be
immediately responsive even if other parts of the system, for example, in the midst of
processing an information retrieval query, require more time to respond.
This also requires that the mechanism for interconnecting an EE's components and
processing their data be able to keep up with the underlying external systems. For
example, in Hal, five C-language-based computer vision systems, each producing several
hundred dimensional data vectors at a rate of up to 30 a second, all connect to a Metaglue-
based visual event classification system which must process all this data in real-time.

Debugging is difficult
Independently of IEs, debugging distributed, asynchronous systems can be a nightmare. If
some high-level system event fails to occur, determining which component is to blame is
usually a long, involved process. Furthermore, understanding the operation of distributed,
loosely coupled components running in parallel - as does the controller for an IE - where
different serializations can have different system-wide effects, is best, but rarely
successfully, avoided. In an IE, this problem is made all the worse by the presence of
many, sometimes exotic, hardware components, such as video multiplexers, that

41

themselves have internal state that may only be imperfectly modeled in their software
drivers.
Good software engineering practices go a long way towards dealing with this problem, but
a more comprehensive solution would require the development of new types of debugging
strategies. (In the next section, we see that Metaglue only makes the most preliminary
efforts in this direction.)

Metaglue

We first discuss the design of Metaglue from a programming language perspective, to give potential users a
sense of what it would be like to work with it. We then proceed to illustrate how particular features in
Metaglue address many of the computational requirements for IEs discussed in the previous section. By
necessity, this section is intended only to sketch and motivate the capabilities of the Metaglue system and
should not be viewed as a complete description of the language. More detail about Metaglue's internals can
be found in [10,11]. (Some examples in this section require cursory knowledge of the Java programming
language.)

The Design
Metaglue is an extension to the Java programming language that introduces a new Agent class. By extending
this class, user-written agents can access the special Metaglue methods discussed below. Metaglue has a
post-compiler, which is run over Java-compiled class files to generate new Metaglue agents. Metaglue also
includes a runtime platform, called the Metaglue Virtual Machine, on which its agents run. The overhead
added by this infrastructure to standard Java programs that are turned into Metaglue agents is negligible.
Our goal with Metaglue was to add a very small number of primitives to the Java language
to make it easy to write agents. Method invocations between agents, even if they are on
different workstations, look exactly like local method calls in Java. Thus, Metaglue
agents, minus the few Metaglue-specific primitives, look almost exactly like ordinary Java
programs. This makes it easy to transform regular Java source files into Metaglue agents,
which enormously adds to Metaglue's value as computational glue. We call the process of
transforming previously existing programs into agents wrapping.
Almost as much time has gone into formulating Metaglue's semantics as to programming
the system itself. We sought to provide a focused set of primitives for managing systems
of distributed, interacting agents and to avoid the temptation of creeping featurism. By
stressing simplicity, anyone proficient in Java can pick up Metaglue very quickly, and the
small number of new primitives makes it easy to learn, remember, and use the system.
In the remainder of this discussion, it will be helpful to keep in mind that running a
Metaglue system first involves starting Metaglue Virtual Machines on all the computers
that are involved. Our machines are generally configured to start these when they are
booted.3

The Capabilities
Metaglue offers the following capabilities, each of which we will address in turn:

3 For reference, this has the computational overhead of running one Java Virtual Machine, which is close to
unnoticeable on modern Pentium-based systems.

42

1. Configuration management
2. Establish and maintain the configuration each agent specifies
3. Establish communication channels between agents
4. Maintain agent state
5. Introduce and modify agents in a running system
6. Manage shared resources
7. Event broadcasting
8. Support for debugging

Metaglue has a powerful naming scheme for agents that is beyond the scope of this document. We will use
here the simplest form of it, the name of the Interface file of an agent, which is in the Java class package
format, e.g., an agent for controlling a television might be referenced by device.Television.

1. Configuration Management
Metaglue has an internal SQL database for managing information about agent's modifiable parameters
(called Attributes), storing their internal persistent state, and giving agents fast, powerful database access.4

Attributes contain information that might otherwise be hardcoded inside agents and difficult to modify,
for example, what workstation the agent needs to run on or parameters that affect its operation. Metaglue has
a web-based interface for modifying Attributes, which can be changed even while an agent is running. This
is one of Metaglue's mechanisms for both configuring a system of agents and interacting with it while it is
operational.

This is code an agent would use to get its location Attribute from Metaglue's built in
database:

Attribute location = new Attribute("location");
System.out.println("I run on " + location.getValue());

2. Agent Configurations
Metaglue agents can specify particular requirements that the system must insure are satisfied before they are
willing to run. These can include the name of a particular computer they must be run on; specifications for
particular types of hardware they require access to; and more abstract capabilities that must be available on
whichever Metaglue Virtual Machine (MVM) they are run on. These are expressed with the tiedToO
primitive, as in:

tiedTo(location.getValue());
tiedTo(capability.FrameGrabber);
tiedTo(device.Television);

If an agent is started on an MVM that does not meet its stated requirements, Metaglue will move it
somewhere else that does. If Metaglue needs to restart an agent due to localized hardware or software
failure, it will attempt to find an alternative MVM on which to run the agent that also satisfies these
requirements. (See item 5.)

3. Agent Connections

The use of an internal database helps enormously in dealing with Java's poor file access capabilities.
Agents use the database rather than store information in files, which is particularly important because agents
can move to different machines while they are running.

43

Because Metaglue is intended as computational glue, it needs to establish paths of
communication between agents, regardless of where they are running. The reliesOn ()
primitive connects agent with capabilities they can request services from. For example, to
use Hal's speech synthesizer, an agent might contain:

Agent speechSynthesizer = reliesOn(speech.Synthesizer);
speechSynthesizer.say("Hello! How are you?");

The reference to speech. Synthesizer refers to an abstract capability, not a particular agent. Because
agents refer to each other by their capabilities and not directly by name, new agents can easily be added to
the system that implement preexisting capabilities without modifying any of the agents that will make use of
them. (A more sophisticated way of obtaining capabilities is described in the Metaglue resource manager
below.)
Metaglue will try to locate an agent that provides the requested capability on any of the
system's computers' MVMs and return a reference to it to the caller. Metaglue has an
internal directory called a Catalog that it uses to find agents once they are started.
Metaglue agents automatically register their capabilities with the Catalog when they are
run.

If no agent offering this capability is found, Metaglue automatically starts one and invisibly insure that it
continues running as long as it is in use.
The reliesOn () primitive makes it very easy to interconnect agents with a single line
of code. Reliance is also a transitive operation. For example, starting the single Hal demo
agent results in the entire Hal system being loaded because of their chain of reliances.
Also, because they have been formally relied upon, Metaglue will attempt to insure that
they continue running indefinitely, as discussed below.

4. Agent State
Agents can use Metaglue's freeze () and defrost () primitives to store and
subsequently retrieve their fields from Metaglue's internal SQL database. The standard
way of doing this is having an agent directly freeze its state when it is shutting down (or at
any other appropriate time), and subsequently defrost itself in its constructor the next time
it is started up. Other aspects of an agent's state, e.g., its connections to other agents, are
internally maintained by Metaglue and generally do not need to be specifically managed by
the agents themselves.
As of yet, we do not have a well-defined schema for capturing the global state of all the
agents in a running Metaglue system.

5. Modifying a running system
Metaglue will attempt to keep a running system of agents alive. If an agent is manually stopped, for
example, during debugging, the agents that rely upon it will by default simply wait for it to return in the
event they need to access it. When the user restarts the agent, it will reload its frozen state and simply pick
up where it left off, first dealing with any pending requests from other agents.
It is also possible to programmatically specify actions, other than simply waiting, that an
agent can do if someone it relies upon is stopped. For example, it might temporarily
switch to another active agent that offers the same capabilities. Metaglue's resource
management can help the system in the event capabilities must be shared due to part of the
system being unavailable.

44

If an agent dies because of unanticipated hardware or software failure, Metaglue will try to
restart it automatically, switching to another MVM if necessary, but still meeting the
agent's required configuration if possible. It is important to note that unanticipated crashes
may cause state information to be lost, and agents who are sensitive to this should refuse to
be automatically restarted. For example, an agent that controls Hal's lighting systems may
not know whether the lights are on or off if it is restarted after a crash because the state
information it defrosts may be inaccurate. However, in that case, it can simply ask Hal's
vision agents whether they can see anything, and thereby determine the state of the lights
in the room. An agent running part of an application, however, could be started out of
sync with the rest of the system, and manual intervention may be required to correct the
problem.
Interestingly, the Metaglue system is itself recursively constructed out of a special set of
Metaglue agents. These agents have the full functionality of the system available to them,
so they can for example, use Hal's speech synthesizer to let users know of internal
problems in the system and ask for help resolving them.

6. Managing shared resources
Among the largest and most complex systems in Metaglue is its resource manager. Before
it existed, agents in Hal simply grabbed the resources they needed and configured them at
will. That a resource management system was necessary became apparent when Hal
developed to the point that its multiple applications conflicted with one another and could
no longer be run simultaneously. Additionally, for an agent to simply rely on the resources
it wants to use, it has to know both what resources exist and are available. As devices and
other agents dynamically come and go in the system, this means that every agent would
need to keep track of the different resources that offer the sets of capabilities it needs. We
discussed above that agents may temporarily make use of substitutes if the agents they
generally rely upon are unavailable. Where should that knowledge of possible alternatives
come from?
The resource system in Metaglue allows agents to request functionality at a very high-
level, without being concerned with how it is provided or resolving resource conflicts
among themselves. Metaglue has a hierarchical set of dealer agents that are responsible
for distributing resources to the rest of the system. There are a wide assortment of
different prototype dealer agents available, each of which has its own specified internal
logic for performing allocation, substitution, etc. These dealers can be used directly by
Metaglue programmers or extended to customize their operation.
Dealers not only give out resources, but they can withdraw previously allocated ones to
redistribute them, based on any of several priority and fairness schemes. For example,
there are dealers in Hal for allocating televisions, video projectors, and displays in general.
An agent must use the dealers to gain access to any of these. If a higher priority agent
needs access to a particular display, it will be temporarily withdrawn from the agent who
has allocated it until it becomes available again, at which point it will be given back.

45

7. Event Broadcasting
In addition to agents making direct requests of one another through method calls, Metaglue
agents can pass messages among themselves. Agents can register with other agents,
including the Metaglue system agents, to find out about events going on in the system.
For example, an agent in Hal interested in greeting people by name when they walk inside
the room, simply registers with the vision-based Entry agent to request messages about
entrance events where the identity of the person can be determined. When these events
occur, it receives a message and uses the agent offering speech synthesis capability to say
hello to them.
We also use event broadcasts to notify groups of agents about context shifts in room
applications to dynamically and uniformly modify Hal's behavior.

8. Debugging
Metaglue has a graphical interface for examining a running system of agents called the Catalog monitor. It
displays all running agents and their reliance interconnections. Clicking on an agent brings up a window in a
read-eval-print loop, in which users can interactively call the agent's methods.
Metaglue also has a logging facility to manage and centralize agents' textual output. This
can be useful for programmers to watch the output of particular agents without worrying
about where they are running or where their output streams are being printed.
We have found these capabilities quite useful, but would still prefer source level
debugging of remote agents, a dynamic object browser, and ways to set breakpoints over
whole groups of agents simultaneously. At least some of these capabilities promise to be
available shortly in commercial Java products and we hope to make use of them during
Hal's continued development.

Discussion

Evaluating the merits of a programming language can defy objectivity. Nonetheless,
Metaglue has been extraordinarily useful in building Hal, and it is highly doubtful Hal
would have reached its present level of development with it. Metaglue is a very stable
system, and we have left large assemblies of agents running for up to a week without any
difficulties. (These systems were eventually stopped for development purposes.)
We now reexamine each of the previously mentioned properties of IEs in the context of
Metaglue.

Distributed, modular systems need computational glue
Metaglue not only provides a channel to interconnect Hal's components, but it also provides the means to
build applications for Hal. Rather than use a special communication mechanism, such as CORBA or KQML,
separate from the system's internal controller, Metaglue allows us to reduce the amount of infrastructure by
providing for both communication and control with a much lighter-weight system.

Resource management is essential
The resource management system in Metaglue not only offers a wide range of default behaviors, but it is
easily customizable through Java's class extension mechanism. It is among Metaglue's most developed
systems and we are in the process of incorporating it into the applications that predated it.

46

Configurations change dynamically
Metaglue offers several mechanisms for coping with dynamically changing systems. The Configuration
Manager and Attribute system allows users to reconfigure agents while they are running. The fact that agents
refer to each other by abstract capabilities means that new agents can be incorporated into a running system
without modifying any of the agents that might rely upon them. Metaglue's ability to start and stop agents
while leaving the rest of the system running allows us to dynamically "hotswap" components of a running
computation. Finally, by substituting new resource managers into a running system, new functionality can be
added that previously no agents were aware of.

State is precious
Metaglue offers support for persistent local state in agents via its freeze and defrost mechanisms. Notions of
global state, however, remain illusive concepts.

lEs model the parallelism of the real world
Java is inherently multithreaded, which Metaglue inherits from it. Metaglue's resource management allows
agents running in parallel to avoid conflicting with one another. The event broadcast mechanism also
simplifies communication among interacting groups of software agents running simultaneously.

Real-time response
The amount of overhead Metaglue adds to Java is minimal. Our avoidance of
heavyweight, specialized communication packages allows Metaglue agents to essentially
run as quickly as Java's Remote Method Invocation system. Metaglue is now incorporated
into "tight" loops in our code, along the most processor intensive critical paths, such as in
our computer vision systems. The development of JIT compilers for Java has enormously
reduced our need to place perceptory components of our system into external C-language
libraries.

Debugging is difficult
Metaglue certainly makes it possible to debug distributed agents systems, but one can hope
for more. There is reason to believe the Java community as a whole shares some of this
interest and will takes steps in this direction.

Future directions
We are presently incorporating an expert system into Metaglue to allow more sophisticated reasoning about
system configuration and resource management. We are also creating a machine learning extension to
Metaglue, which will incorporate pieces of the system described in [6].

References
1. Bobick, A.: Intille, S.; Davis, J.; Baird, F.; Pinhanez, C; Campbell, L.; Ivanov, Y.; Schütte, A.; and Wilson, A. Design Decisions for

Interactive Environments: Evaluating the KidsRoom. Proceedings of the 1998 AAAI Spring Symposium on Intelligent Environments.
AAAI TR SS-98-02. 1998.

2. Coen, M. Building Brains for Rooms: Designing Distributed Software Agents. In Proceedings of the Ninth Conference on
Innovative Applications of Artificial Intelligence. (IAAI97). Providence, R.I. 1997.

3. Coen, M. Design Principles for Intelligent Environments. In Proceedings of The Fifteenth National Conference on Artificial
Intelligence. (AAAI98). Madison, Wisconsin. 1998.

4. Coen, M. (ed.) Proceedings of the 1998 AAAI Spring Symposium on Intelligent Environments. AAAI TR SS-98-02. 1998.
5. Coen, M. The Future Of Human-Computer Interaction or How I learned to stop worrying and love My Intelligent Room. IEEE

Intelligent Systems. March/April. 1999.
6. Coen, M., and Wilson, K. Learning Spatial Event Models from Multiple-Camera Perspectives in an Intelligent Room. In submission.

47

7. General Magic. Odyssey (Beta 2) Agent System Documentation, http://www.genmagic.com/agents.
8. Lange, D. and Oshima. M. Programming and Deploying Java Mobile Agents with Aglets. Addison Wesley. 1999.
9. ObjectSpace, Inc. ObjectSpace Voyager Core Package Technical Overview (Version 1.0). December 1997.

http://www.objectspace.com/voyager/whitepapers.
10. Phillips, B. Metaglue: A Programming Language for Multi-Agent Systems. M.Eng. Thesis. Massachusetts Institute of Technology

1999.
11. Warshawsky, N. Extending the Metaglue Multi-Agent System. M.Eng. Thesis. Massachusetts Institute of Technology. 1999.
12. Weiser. M. The Computer for the 21" Century. Scientific American, pp. 94-10, September 1991.

«U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10157

48

MISSION
OF

ÄFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

